-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_4.tex
178 lines (152 loc) · 4.68 KB
/
chapter_4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
%\addtocounter{chapter}{3}%only temporary
\chapter{GA-based DSA With Basic Genetic Operators}\label{sec:Pf}
Bla Bla
\begin{figure}[!htb]
\begin{center}
%\hspace{35mm}
\vspace{-5mm}
\includegraphics [scale=0.75]{algos/GA.pdf}
\vspace{-140mm}
\caption{Basic GA-based DSA}
\vspace{-3mm}
\label{GAlgo}
\end{center}
\end{figure}
\begin{table}[t]
\begin{center} \vspace{1mm}
\caption{All possible ranges of values of F(I) for $n=6$ and $n_p=2$}\vspace{-2mm}
\begin{tabular}{|c|c|c|c|}
\hline
$INP(I)$ & $IN(I)$ & \textbf{ Range of $F(I)$ }& Range of $F_1(I)$\\ \hline
\multirow{4}{*}{0} & 0 & \textbf{[1, 2]} & [1, 2] \\ \cline{2-4}
&1 & \textbf{[1.58, 3.17]} & [2, 4] \\ \cline{2-4}
&2 & \textbf{[2, 4] }& [3, 6] \\ \cline{2-4}
&3 & \textbf{[2.32, 4.64]} & [4, 8] \\
\hline
\multirow{4}{*}{1} & 1 & \textbf{[3.17, 6.34]} & [4, 8] \\ \cline{2-4}
&2 & \textbf{[4, 8]} & [6, 12] \\ \cline{2-4}
&3 & \textbf{[4.64, 9.2]} & [8, 16] \\ \cline{2-4}
&4 & \textbf{[5.17, 10.3]} & [10, 20] \\
\hline
\multirow{4}{*}{2} & 2 & \textbf{[6, 12] }& [9, 18] \\ \cline{2-4}
&3 & \textbf{[6.97, 13.93]} & [12, 24] \\ \cline{2-4}
&4 & \textbf{[7.75, 15.5]} & [15, 30] \\ \cline{2-4}
&5 & \textbf{[8.42, 16.84]} & [18, 36] \\
\hline
\end{tabular}
%\vspace{-4mm}
\label{fitness}
\end{center}
\end{table}
\begin{figure*}[!thb]
\centering\vspace{-7mm}
\begin{tabular}{cc}
\hspace{-5mm}
\subfigure[Ranges of $F(I)$]{%
\label{fig:second}
\includegraphics [width=.5\textwidth]{results/radial.pdf}
} &
% \vspace{-3mm} \\
\hspace{-10mm}
\subfigure[Ranges of $F_1(I)$]{%
\label{fig:second}
\includegraphics [width=.5\textwidth]{results/radial2.pdf}
}
\end{tabular}
\vspace{-1mm}
\caption{Value ranges of different fitness functions for varying combination of [INP(I), IN(I)] pairs considering $(n=6, n_p=2)$}
% \vspace{-5mm}
\label{fig:radial}
% \end{center}
\end{figure*}
\begin{figure}[!htb]
%\begin{center}
\hspace{35mm}
\includegraphics [scale=0.85]{figures/mute.pdf}
\vspace{-75mm}
\caption{Point mutation operation}
%\vspace{-8mm}
\label{mute}
%\end{center}
\end{figure}
\begin{center}
\begin{figure*}[!thb]
\vspace{-33mm}
\centering
\begin{tabular}{ll}
\hspace{-15mm}
\subfigure[T, 1-P]{
\label{fig:first}
\includegraphics [width=.55\textwidth]{results/1pt.pdf}
}
\hspace{-10mm}
\subfigure[W, 1-P ]{%
\label{fig:second}
\includegraphics [width=.55\textwidth]{results/1pw.pdf}
}
\vspace{-30mm}
\end{tabular}
\begin{tabular}{ll}
\hspace{-15mm}
\subfigure[T, 2-P]{%
\label{fig:first}
\includegraphics [width=.55\textwidth]{results/2pt.pdf}
}
\hspace{-10mm}
\subfigure[W, 2-P]{%
\label{fig:second}
\includegraphics [width=.55\textwidth]{results/2pw.pdf}
}
\vspace{-30mm}
\end{tabular}
\begin{tabular}{ll}
\hspace{-15mm}
\subfigure[T, U]{%
\label{fig:first}
\includegraphics [width=.55\textwidth]{results/upt.pdf}
}
\hspace{-10mm}
\subfigure[W, U]{%
\label{fig:second}
\includegraphics [width=.55\textwidth]{results/upw.pdf}
}
%\vspace{1mm}
\end{tabular}
\vspace{-1mm}
\caption{Performance of GA as DSA algorithm for different $(n, m)$ pairs with different combination of genetic operators and parameter values. Here, 1-P denotes 1-point crossover, 2-P denotes 2-point crossover, $U$ denotes uniform crossover, $T$ denotes Tournament selection, and $W$ denotes Rank-based roulette wheel selection. } %\vspace{-13mm}
\label{fig:test3}
\end{figure*}
\end{center}
%\vspace{-5mm}
\begin{center}
\begin{figure}[h]
\vspace{-26mm}
\centering
\begin{tabular}{ccc}
\hspace{-15mm}
\subfigure[Avg. number of iterations needed for convergence]{
\label{fig:second}
\includegraphics [width=.6\textwidth]{results/muavg.pdf}
% \vspace{-40mm}
}
% \vspace{-20mm}
% \\
\hspace{-15mm}
\subfigure[Probability of successful convergence]{
\label{fig:first}
\includegraphics [width=.56\textwidth]{results/murate.pdf}
} \vspace{-18mm}
\\
% \hspace{5mm}
\subfigure[Overall convergence rate ($C_{rate}$)]{
\label{fig:second}
\includegraphics [width=.6\textwidth]{results/ovrate.pdf}
}
% \vspace{-10mm}
\end{tabular}
%\vspace{-1mm}
\caption{Impact of mutation rate ($\alpha_m$) on convergence over varied network topologies} %\vspace{-6mm}
\label{fig:mut}
\end{figure}
\end{center}
%\vspace{-12mm}