-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHoTT_coq_091.v
191 lines (167 loc) · 6.25 KB
/
HoTT_coq_091.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
Set Implicit Arguments.
Set Printing Universes.
Set Asymmetric Patterns.
Inductive paths {A : Type} (a : A) : A -> Type :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Arguments paths_ind [A] a P f y p.
Arguments paths_rec [A] a P f y p.
Arguments paths_rect [A] a P f y p.
Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.
Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y :=
match p with idpath => u end.
Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y
:= match p with idpath => idpath end.
Arguments ap {A B} f {x y} p : simpl nomatch.
Definition Sect {A B : Type} (s : A -> B) (r : B -> A) :=
forall x : A, r (s x) = x.
(** A typeclass that includes the data making [f] into an adjoint equivalence. *)
Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv {
equiv_inv : B -> A ;
eisretr : Sect equiv_inv f;
eissect : Sect f equiv_inv;
eisadj : forall x : A, eisretr (f x) = ap f (eissect x)
}.
Arguments eisretr {A B} f {_} _.
Arguments eissect {A B} f {_} _.
Arguments eisadj {A B} f {_} _.
Inductive type_eq (A : Type) : Type -> Type :=
| type_eq_refl : type_eq A A
| type_eq_impossible : False -> forall B : Type, type_eq A B.
Definition type_eq_sym {A B} (p : type_eq A B) : type_eq B A
:= match p in (type_eq _ B) return (type_eq B A) with
| type_eq_refl => type_eq_refl _
| type_eq_impossible f B => type_eq_impossible _ f A
end.
Definition type_eq_sym_type_eq_sym {A B} (p : type_eq A B) : type_eq_sym (type_eq_sym p) = p
:= match p as p return type_eq_sym (type_eq_sym p) = p with
| type_eq_refl => idpath
| type_eq_impossible f _ => idpath
end.
Module Type LiftT.
Section local.
Let type_cast_up_type : Type.
Proof.
let U0 := constr:(Type) in
let U1 := constr:(Type) in
let unif := constr:(U0 : U1) in
exact (forall T : U0, { T' : U1 & type_eq T' T }).
Defined.
Axiom type_cast_up : type_cast_up_type.
End local.
Definition Lift (T : Type) := projT1 (type_cast_up T).
Definition lift {T} : T -> Lift T
:= match projT2 (type_cast_up T) in (type_eq _ T') return T' -> Lift T with
| type_eq_refl => fun x => x
| type_eq_impossible bad _ => match bad with end
end.
Section equiv.
Definition lower' {T} : Lift T -> T
:= match projT2 (type_cast_up T) in (type_eq _ T') return Lift T -> T' with
| type_eq_refl => fun x => x
| type_eq_impossible bad _ => match bad with end
end.
Definition lift_lower {T} (x : Lift T) : lift (lower' x) = x.
Proof.
unfold lower', lift.
destruct (projT2 (type_cast_up T)) as [|[]].
reflexivity.
Defined.
Definition lower_lift {T} (x : T) : lower' (lift x) = x.
Proof.
unfold lower', lift, Lift in *.
destruct (type_cast_up T) as [T' p]; simpl.
let y := match goal with |- ?y => constr:(y) end in
let P := match (eval pattern p in y) with ?f p => constr:(f) end in
apply (@transport _ P _ _ (type_eq_sym_type_eq_sym p)); simpl in *.
generalize (type_eq_sym p); intro p'; clear p.
destruct p' as [|[]]; simpl.
reflexivity.
Defined.
Global Instance isequiv_lift A : IsEquiv (@lift A).
Proof.
refine (@BuildIsEquiv
_ _
lift lower'
lift_lower
lower_lift
_).
compute.
intro x.
destruct (type_cast_up A) as [T' p].
let y := match goal with |- ?y => constr:(y) end in
let P := match (eval pattern p in y) with ?f p => constr:(f) end in
apply (@transport _ P _ _ (type_eq_sym_type_eq_sym p)); simpl in *.
generalize (type_eq_sym p); intro p'; clear p.
destruct p' as [|[]]; simpl.
reflexivity.
Defined.
End equiv.
Definition lower {A} := (@equiv_inv _ _ (@lift A) _).
End LiftT.
Module Lift : LiftT.
Section local.
Let type_cast_up_type : Type.
Proof.
let U0 := constr:(Type) in
let U1 := constr:(Type) in
let unif := constr:(U0 : U1) in
exact (forall T : U0, { T' : U1 & type_eq T' T }).
Defined.
Definition type_cast_up : type_cast_up_type
:= fun T => existT (fun T' => type_eq T' T) T (type_eq_refl _).
End local.
Definition Lift (T : Type) := projT1 (type_cast_up T).
Definition lift {T} : T -> Lift T
:= match projT2 (type_cast_up T) in (type_eq _ T') return T' -> Lift T with
| type_eq_refl => fun x => x
| type_eq_impossible bad _ => match bad with end
end.
Section equiv.
Definition lower' {T} : Lift T -> T
:= match projT2 (type_cast_up T) in (type_eq _ T') return Lift T -> T' with
| type_eq_refl => fun x => x
| type_eq_impossible bad _ => match bad with end
end.
Definition lift_lower {T} (x : Lift T) : lift (lower' x) = x.
Proof.
unfold lower', lift.
destruct (projT2 (type_cast_up T)) as [|[]].
reflexivity.
Defined.
Definition lower_lift {T} (x : T) : lower' (lift x) = x.
Proof.
unfold lower', lift, Lift in *.
destruct (type_cast_up T) as [T' p]; simpl.
let y := match goal with |- ?y => constr:(y) end in
let P := match (eval pattern p in y) with ?f p => constr:(f) end in
apply (@transport _ P _ _ (type_eq_sym_type_eq_sym p)); simpl in *.
generalize (type_eq_sym p); intro p'; clear p.
destruct p' as [|[]]; simpl.
reflexivity.
Defined.
Global Instance isequiv_lift A : IsEquiv (@lift A).
Proof.
refine (@BuildIsEquiv
_ _
lift lower'
lift_lower
lower_lift
_).
compute.
intro x.
destruct (type_cast_up A) as [T' p].
let y := match goal with |- ?y => constr:(y) end in
let P := match (eval pattern p in y) with ?f p => constr:(f) end in
apply (@transport _ P _ _ (type_eq_sym_type_eq_sym p)); simpl in *.
generalize (type_eq_sym p); intro p'; clear p.
destruct p' as [|[]]; simpl.
reflexivity.
Defined.
End equiv.
Definition lower {A} := (@equiv_inv _ _ (@lift A) _).
End Lift.
(* Toplevel input, characters 15-24:
Anomaly: Invalid argument: enforce_eq_instances called with instances of different lengths.
Please report. *)