-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHoTT_coq_061.v
133 lines (108 loc) · 4.52 KB
/
HoTT_coq_061.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
Require Import TestSuite.admit.
(* There are some problems in materialize_evar with local definitions,
as CO below; this is not completely sorted out yet, but at least
it fails in a smooth way at the time of today [HH] *)
(* File reduced by coq-bug-finder from 9039 lines to 7786 lines, then
from 7245 lines to 476 lines, then from 417 lines to 249 lines,
then from 171 lines to 127 lines. *)
Set Implicit Arguments.
Set Universe Polymorphism.
Definition admit {T} : T.
Admitted.
Delimit Scope object_scope with object.
Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Delimit Scope functor_scope with functor.
Delimit Scope natural_transformation_scope with natural_transformation.
Reserved Infix "o" (at level 40, left associativity).
Inductive paths {A : Type} (a : A) : A -> Type :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.
Definition inverse {A : Type} {x y : A} (p : x = y) : y = x
:= match p with idpath => idpath end.
Record PreCategory :=
{
Object :> Type;
Morphism : Object -> Object -> Type;
Compose : forall s d d', Morphism d d' -> Morphism s d -> Morphism s d' where "f 'o' g" := (Compose f g)
}.
Bind Scope category_scope with PreCategory.
Arguments Compose [!C%category s%object d%object d'%object] m1%morphism m2%morphism : rename.
Infix "o" := Compose : morphism_scope.
Local Open Scope morphism_scope.
Record Functor (C D : PreCategory) :=
{
ObjectOf :> C -> D;
MorphismOf : forall s d, C.(Morphism) s d -> D.(Morphism) (ObjectOf s) (ObjectOf d);
FCompositionOf : forall s d d' (m1 : C.(Morphism) s d) (m2: C.(Morphism) d d'),
MorphismOf _ _ (m2 o m1) = (MorphismOf _ _ m2) o (MorphismOf _ _ m1)
}.
Bind Scope functor_scope with Functor.
Arguments MorphismOf [C%category] [D%category] F%functor [s%object d%object] m%morphism : rename, simpl nomatch.
Definition ComposeFunctors C D E
(G : Functor D E) (F : Functor C D) : Functor C E
:= Build_Functor C E
(fun c => G (F c))
admit
admit.
Infix "o" := ComposeFunctors : functor_scope.
Record NaturalTransformation C D (F G : Functor C D) :=
{
ComponentsOf :> forall c, D.(Morphism) (F c) (G c);
Commutes : forall s d (m : C.(Morphism) s d),
ComponentsOf d o F.(MorphismOf) m = G.(MorphismOf) m o ComponentsOf s
}.
Generalizable All Variables.
Section NTComposeT.
Variable C : PreCategory.
Variable D : PreCategory.
Variables F F' F'' : Functor C D.
Variable T' : NaturalTransformation F' F''.
Variable T : NaturalTransformation F F'.
Let CO := fun c => T' c o T c.
Definition NTComposeT_Commutes s d (m : Morphism C s d)
: CO d o MorphismOf F m = MorphismOf F'' m o CO s.
admit.
Defined.
Definition NTComposeT
: NaturalTransformation F F''
:= Build_NaturalTransformation F F''
(fun c => T' c o T c)
NTComposeT_Commutes.
End NTComposeT.
Definition NTWhiskerR C D E (F F' : Functor D E) (T : NaturalTransformation F F')
(G : Functor C D)
:= Build_NaturalTransformation (F o G) (F' o G)
(fun c => T (G c))
admit.
Class NTC_Composable A B (a : A) (b : B) (T : Type) (term : T) := {}.
Definition NTC_Composable_term `{@NTC_Composable A B a b T term} := term.
Notation "T 'o' U"
:= (@NTC_Composable_term _ _ T%natural_transformation U%natural_transformation _ _ _)
: natural_transformation_scope.
Local Open Scope natural_transformation_scope.
Lemma NTWhiskerR_CompositionOf C D
(F G H : Functor C D)
(T : NaturalTransformation G H)
(T' : NaturalTransformation F G) B (I : Functor B C)
: NTWhiskerR (NTComposeT T T') I = NTComposeT (NTWhiskerR T I) (NTWhiskerR T' I).
admit.
Defined.
Definition FunctorCategory C D : PreCategory
:= @Build_PreCategory (Functor C D)
(NaturalTransformation (C := C) (D := D))
admit.
Notation "[ C , D ]" := (FunctorCategory C D) : category_scope.
Variable C : PreCategory.
Variable D : PreCategory.
Variable E : PreCategory.
Fail Definition NTWhiskerR_Functorial (G : [C, D]%category)
: [[D, E], [C, E]]%category
:= Build_Functor
[C, D] [C, E]
(fun F => F o G)
(fun _ _ T => T o G)
(fun _ _ _ _ _ => inverse (NTWhiskerR_CompositionOf _ _ _)).
(* Anomaly: Uncaught exception Not_found(_). Please report. *)