forked from togethercomputer/RedPajama-Data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdedup.py
162 lines (139 loc) · 5.2 KB
/
dedup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright 2023 Ontocord.ai, Together Computer, ETH Zürich, Stanford University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from multiprocessing import Process, Queue
import pickle
import tarfile
import os
import re
from multiprocessing import Pool
from simhash import Simhash
import json
from datetime import datetime
width = 6
hash_k = 5
max_hash_len = 0
def get_features(s):
s = s.lower()
s = re.sub(r'[^\w]+', '', s)
return [s[i:i + width] for i in range(max(len(s) - width + 1, 1))]
def pg19_index(num):
hashes = []
members = []
print("Starting pg19_%0.3d"%(num), len(hashes))
with open("./data/book/split/pg19_%0.3d"%(num), "r") as f:
lines = f.readlines()
for idx, i in enumerate(lines):
if idx % 200 == 0:
print("This is pg19_%0.3d"%(num), idx)
member = json.loads(i)
try:
if max_hash_len == 0:
hashes.append((str(idx + num * 2000), Simhash(get_features(member['text']))))
else:
hashes.append((str(idx + num * 2000), Simhash(get_features(member['text'][:max_hash_len]))))
members.append(member)
except:
continue
print("Finishing pg19_%0.3d"%(num), len(hashes), len(members))
return (hashes, members)
def book_index(num):
hashes = []
members = []
print("Starting book_%0.3d"%(num), len(hashes))
with open("./data/book/split/books3_%0.3d"%(num), "r") as f:
lines = f.readlines()
for idx, i in enumerate(lines):
if idx % 200 == 0:
print("This is book_%0.3d"%(num), idx)
member = json.loads(i)
try:
if max_hash_len == 0:
hashes.append((str(idx + num * 2000), Simhash(get_features(member['text']))))
else:
hashes.append((str(idx + num * 2000), Simhash(get_features(member['text'][:max_hash_len]))))
members.append(member)
except:
continue
print("Finishing book_%0.3d"%(num), len(hashes), len(members))
return (hashes, members)
def get_pg19(njobs):
with Pool(n_jobs) as p:
hashes_members = p.map(pg19_index, [i for i in range(15)])
return hashes_members
def get_book(njobs):
with Pool(n_jobs) as p:
hashes_members = p.map(book_index, [i for i in range(99)])
return hashes_members
def split_list(list, n):
length = len(list)
return [list[i*length // n: (i+1)*length // n] for i in range(n)]
def find_match(args):
i, index = args
value_dict = {}
for item in i:
flag = 1
try:
now_list = index.get_near_dups(item[1])
for x in now_list:
if int(x) >= int(item[0]):
continue
flag = 0
break
value_dict[item[0]] = flag
except:
value_dict[item[0]] = flag
return value_dict
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-w', type=int, default=6, help='the window size')
parser.add_argument('-k', type=int, default=5, help='find K nearest region')
parser.add_argument('-l', type=int, default=0, help='the max length of the text for hashing, 0 means no limit')
parser.add_argument('-n', type=int, default=100, help='the number of processes to run')
args = parser.parse_args()
width = args.w
hash_k = args.k
max_hash_len = args.l
n_jobs = args.n
outfile = "./data/book/book.jsonl"
hashes_members = get_pg19(n_jobs)
hashes_members.extend(get_book(n_jobs))
print("Finish getting hashes and members!")
import itertools
hashes = list(itertools.chain(*[item[0] for item in hashes_members]))
import itertools
members = list(itertools.chain(*[item[1] for item in hashes_members]))
import re
from simhash import Simhash, SimhashIndex
index = SimhashIndex(hashes, k=hash_k)
print("Finish building index!")
from multiprocessing import Pool
n_hashes = split_list(hashes, n_jobs)
with Pool(n_jobs) as p:
temp_dict = p.map(find_match, [(i, index) for i in n_hashes])
value_dict = {}
for dict in temp_dict:
for i in dict:
value_dict[i] = dict[i]
print("Finish finding matches!")
mem_hashes = list(zip(members, hashes))
with open(outfile, 'w') as f:
for mem, a_hash in mem_hashes:
if value_dict[a_hash[0]] == 1:
meta = {}
for feature in mem:
if feature != "text":
meta[feature] = mem[feature]
new = {"meta": meta, "text": mem["text"]}
f.write(json.dumps(new) + '\n')