forked from bglnelissen/slideToolkit
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslideNormalize.py
executable file
·106 lines (79 loc) · 3.04 KB
/
slideNormalize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/env python3
import cv2
import os
import argparse
def is_file_exist(filename):
"""Check if a file exists."""
return os.path.isfile(filename)
def replace_string(subject, search, replace):
"""Replace occurrences of a substring in a string with another string."""
return subject.replace(search, replace)
def remove_extension(filename):
"""Remove the extension from a filename."""
return os.path.splitext(filename)[0]
def normalize_slide_image(input_filename, output_filename, show=False):
"""Normalize an image using CLAHE (Contrast Limited Adaptive Histogram Equalization)."""
print("Starting image normalization.")
# Read RGB image and convert to Lab color space
print("\t...Reading RGB color image and converting to Lab.")
bgr_image = cv2.imread(input_filename)
lab_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2Lab)
# Extract the L channel
print("\t...Extracting the L channel.")
lab_planes = list(cv2.split(lab_image))
# Apply CLAHE to the L channel
print("\t...Applying the CLAHE algorithm to the L channel.")
clahe = cv2.createCLAHE(clipLimit=2)
lab_planes[0] = clahe.apply(lab_planes[0])
# Merge the planes back into a Lab image
print("\t...Merging color planes back into a Lab image.")
lab_image = cv2.merge(lab_planes)
# Convert back to BGR color space
print("\t...Converting back to RGB color image.")
image_clahe = cv2.cvtColor(lab_image, cv2.COLOR_Lab2BGR)
# Show images if required
if show:
print("Displaying results. (Press any key to quit...)")
cv2.imshow("Original image", bgr_image)
cv2.imshow("Normalized (CLAHE) image", image_clahe)
cv2.waitKey(0)
cv2.destroyAllWindows()
# Save the result
cv2.imwrite(output_filename, image_clahe)
def main():
parser = argparse.ArgumentParser(
description="Normalize an image using CLAHE (Contrast Limited Adaptive Histogram Equalization)."
)
parser.add_argument(
"-f", "--file", required=True, help="The filename of the image to process."
)
parser.add_argument("-o", "--output", help="The output filename.")
parser.add_argument(
"-e", "--extension", help="The file extension for the output image."
)
parser.add_argument(
"-s",
"--show",
action="store_true",
help="Show results in a graphical interface.",
)
args = parser.parse_args()
inname = args.file
outname = (
args.output
if args.output
else replace_string(inname, ".tile.tissue.png", ".normalized.tile.tissue.png")
)
if args.extension:
outname = remove_extension(outname) + "." + args.extension
if not is_file_exist(inname):
print(f"ERROR: File '{inname}' not found.")
exit(1)
if inname == outname:
print("ERROR: Refusing to overwrite source file with output.")
exit(1)
print(f"Input: {inname}")
print(f"Output: {outname}")
normalize_slide_image(inname, outname, args.show)
if __name__ == "__main__":
main()