-
Notifications
You must be signed in to change notification settings - Fork 62
/
m_coloring.cpp
79 lines (66 loc) · 1.88 KB
/
m_coloring.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
//{ Driver Code Starts
#include <bits/stdc++.h>
using namespace std;
// } Driver Code Ends
class Solution{
public:
bool isSafe(int node, bool graph[101][101], int color[], int n, int col){
for(int k=0; k<n; k++){
if(k!=node && graph[k][node]==1 && color[k]==col){
return false;
}
}
return true;
}
bool possible(int node, int color[], bool graph[101][101], int m, int n){
if(node == n){
return true;
}
for(int i=1; i<=m; i++){
if (isSafe(node, graph, color, n, i)){
color[node] = i;
if(possible(node+1, color, graph, m, n)){
return true;
}
color[node] = 0;
}
}
return false;
}
// Function to determine if graph can be coloured with at most M colours such
// that no two adjacent vertices of graph are coloured with same colour.
bool graphColoring(bool graph[101][101], int m, int n) {
int color[n];
for(int i=0; i<n; i++){
color[i]=0;
}
if (possible(0, color, graph, m, n)){
return true;
}
return false;
}
};
//{ Driver Code Starts.
int main() {
int t;
cin >> t;
while (t--) {
int n, m, e;
cin >> n >> m >> e;
int i;
bool graph[101][101];
for (i = 0; i < n; i++) {
memset(graph[i], 0, sizeof(graph[i]));
}
for (i = 0; i < e; i++) {
int a, b;
cin >> a >> b;
graph[a - 1][b - 1] = 1;
graph[b - 1][a - 1] = 1;
}
Solution ob;
cout << ob.graphColoring(graph, m, n) << endl;
}
return 0;
}
// } Driver Code Ends