forked from Borda/pyImSegm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_config.yml
54 lines (40 loc) · 1.35 KB
/
sample_config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# unsigned integer
slic_size: 35
# float between 0 ad 1
slic_regul: 0.2
# OPTIONS: {
# color: ['mean', 'std', 'energy', 'median', 'meanGrad'],
# color_hsv: ['mean', 'std', 'energy', 'median', 'meanGrad'],
# color_luv: ['mean', 'std', 'energy', 'median', 'meanGrad'],
# color_lab: ['mean', 'std', 'energy', 'median', 'meanGrad'],
# color_hed: ['mean', 'std', 'energy', 'median', 'meanGrad'],
# color_xyz: ['mean', 'std', 'energy', 'median', 'meanGrad'],
# tLM: ['mean', 'std', 'energy', 'median', 'meanGrad'],
# tLM_short: ['mean', 'std', 'energy', 'median', 'meanGrad']
# }
features:
color_rgb: ['mean', 'std', 'energy']
# float between 0 and 1 or None
pca_coef: null
# OPTIONS: ['GMM', 'GMM_kmeans', 'GMM_Otsu', 'kmeans', 'kmeans_quantiles', 'BGM']
estim_model: 'GMM'
# float between 0 ad 1
label_purity: 0.95
# OPTIONS: ['None', 'random', 'kmeans', 'unique']
balance: 'unique'
# OPTIONS: ['RandForest', 'KNN', 'SVM', 'DecTree', 'GradBoost', 'LogistRegr', 'AdaBoost']
classif: 'RandForest'
# OPTIONS: ['f1', 'accuracy', 'precision', 'recall']
classif_metric: 'f1'
# unsigned integer
nb_classif_search: 50
# OPTIONS: ['spatial', 'color', 'features', 'model', 'model_l1', 'model_l2', 'model_lT']
gc_edge_type: 'model'
# list of labels to be skipped
drop_labels: []
# positive float
gc_regul: 3.0
# float between 0 and 1
cross_val: 0.1
run_LPO: true
run_groupGMM: true