diff --git a/talk/slides.html b/talk/slides.html index 6cdabcc..07777fc 100755 --- a/talk/slides.html +++ b/talk/slides.html @@ -54,7 +54,7 @@ /* CSS to align the term to the right */div#\:\$p>svg>foreignObject>section .right-aligned{text-align:right;font-style:italic;margin-top:calc(var(--marpit-root-font-size, 1rem) * 0.5); /* Add some spacing from the quote */display:block}div#\:\$p>svg>foreignObject>section div.twocols{margin-top:35px;column-count:2}div#\:\$p>svg>foreignObject>section div.twocols :is(h1,marp-h1):first-child,div#\:\$p>svg>foreignObject>section div.twocols :is(h2,marp-h2):first-child,div#\:\$p>svg>foreignObject>section div.twocols p:first-child,div#\:\$p>svg>foreignObject>section div.twocols ul li p:first-child,div#\:\$p>svg>foreignObject>section div.twocols ul li:first-child,div#\:\$p>svg>foreignObject>section div.twocols ul:first-child{margin-top:0!important}div#\:\$p>svg>foreignObject>section div.twocols p.break{break-before:column;margin-top:0} -/* @theme f1ebnse7iijwn07w5k9vr0003l217dw648g6v74a7xt2zx */div#\:\$p>svg>foreignObject>section .image-container{display:flex;justify-content:center;align-items:center;border:5px solid red; /* Frame color */padding:0 /* Remove padding */}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]{columns:initial!important;display:block!important;padding:0!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]:after,div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]:before,div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=content]:after,div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=content]:before{display:none!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]>div[data-marpit-advanced-background-container]{all:initial;display:flex;flex-direction:row;height:100%;overflow:hidden;width:100%}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]>div[data-marpit-advanced-background-container][data-marpit-advanced-background-direction=vertical]{flex-direction:column}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background][data-marpit-advanced-background-split]>div[data-marpit-advanced-background-container]{width:var(--marpit-advanced-background-split,50%)}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background][data-marpit-advanced-background-split=right]>div[data-marpit-advanced-background-container]{margin-left:calc(100% - var(--marpit-advanced-background-split, 50%))}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]>div[data-marpit-advanced-background-container]>figure{all:initial;background-position:center;background-repeat:no-repeat;background-size:cover;flex:auto;margin:0}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=content],div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=pseudo]{background:transparent!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=pseudo],div#\:\$p>svg[data-marpit-svg]>foreignObject[data-marpit-advanced-background=pseudo]{pointer-events:none!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background-split]{width:100%;height:100%}
+/* @theme qj8vbqwsc5xv7fpjkw8omg2iyhwjdgf8hi5dwn577h */div#\:\$p>svg>foreignObject>section .image-container{display:flex;justify-content:center;align-items:center;border:5px solid red; /* Frame color */padding:0 /* Remove padding */}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]{columns:initial!important;display:block!important;padding:0!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]:after,div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]:before,div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=content]:after,div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=content]:before{display:none!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]>div[data-marpit-advanced-background-container]{all:initial;display:flex;flex-direction:row;height:100%;overflow:hidden;width:100%}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]>div[data-marpit-advanced-background-container][data-marpit-advanced-background-direction=vertical]{flex-direction:column}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background][data-marpit-advanced-background-split]>div[data-marpit-advanced-background-container]{width:var(--marpit-advanced-background-split,50%)}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background][data-marpit-advanced-background-split=right]>div[data-marpit-advanced-background-container]{margin-left:calc(100% - var(--marpit-advanced-background-split, 50%))}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]>div[data-marpit-advanced-background-container]>figure{all:initial;background-position:center;background-repeat:no-repeat;background-size:cover;flex:auto;margin:0}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=content],div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=pseudo]{background:transparent!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=pseudo],div#\:\$p>svg[data-marpit-svg]>foreignObject[data-marpit-advanced-background=pseudo]{pointer-events:none!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background-split]{width:100%;height:100%}
24.10.2024

Optimize your curves

@@ -64,15 +64,15 @@

Oslo Python MeetUp

Sunniva Indrehus

-
+

📈 + 💪 + 🐍 = ❓

-
sunniva@ngi$ echo $(whoami)
+
sunniva@ngi$ echo $(whoami)
 
-
+

Problem

@@ -88,7 +88,7 @@

Problem

-
+

Optimization: an act, process, or methodology of making something (such as a design, system, or decision) as fully perfect, functional, or effective as possible
specifically : the mathematical procedures (such as finding the maximum of a function) involved in this

@@ -99,7 +99,7 @@

Problem

-
+

A solution

@@ -115,7 +115,7 @@

A solution

-
+

Another solution

@@ -131,7 +131,7 @@

Another solution

-
+

A third solution

@@ -147,7 +147,7 @@

A third solution

-
+

❗ Choose your model ❗

@@ -163,7 +163,7 @@

-
+


Figure credit: PAGE, Ana M., et al. A macro-element pile foundation model for integrated analyses of monopile-based offshore wind turbines. Ocean Engineering, 2018, 167: 23-35.

Real (NGI work) life example

@@ -190,7 +190,7 @@

Real (NGI work) life example

-
+


Figure credit: PAGE, Ana M., et al. A macro-element pile foundation model for integrated analyses of monopile-based offshore wind turbines. Ocean Engineering, 2018, 167: 23-35.

Real (NGI work) life example

@@ -219,10 +219,10 @@

Real (NGI work) life example

-
+

What is Curve Fitting?

    -
  • Find the best-fit curve for a dataset using a known model +
  • Find the best-fit curve for a dataset using a known model
    • Minimize the difference between observed and predicted values

    @@ -236,7 +236,7 @@

    What is Curve Fitting?

-
+

Difference between observed and predicted values

@@ -247,7 +247,7 @@

-
+

Curve fitting requirements

  • Estimate parameter uncertainties
  • @@ -257,7 +257,7 @@

    Curve fitting requirements

-
+

Recommended tool (by me)

@@ -291,7 +291,7 @@

Recommended tool (by me)

-
+

A new non-linear problem

@@ -310,11 +310,11 @@

A new non-linear problem

-
+

✨ Let's see some code ✨

-
+

Problem setup

from lmfit import Minimizer, create_params
 
@@ -338,7 +338,7 @@ 

Problem setup

-
+

Handling bounds

from lmfit import Parameters
 
@@ -358,7 +358,7 @@ 

Handling bounds

-
+

Interpret simulation results

[[Fit Statistics]]
     # fitting method   = least_squares
@@ -381,15 +381,15 @@ 

Interpret simulation results

-
+

-
+

📈 + 💪 + 🐍 = ❓

-
+

📈 + 💪 + 🐍 = ❤️

diff --git a/talk/slides.md b/talk/slides.md index 0610311..a1920a6 100755 --- a/talk/slides.md +++ b/talk/slides.md @@ -146,7 +146,7 @@ Horizontal displacement curves under load # What *is* Curve Fitting? -* Find the **best-fit curve** for a dataset using a known model +* Find the **best-fit curve** for a dataset using a *known model* * **Minimize** the difference between *observed* and *predicted* values $$ \chi^2 = \sum_{i=1}^{N} \frac{(y_i^\text{obs} - y_i^\text{pred})^2}{\sigma_i^2}