-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathfgs.py
64 lines (48 loc) · 1.57 KB
/
fgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import keras.backend as K
from attack_utils import gen_grad
import tensorflow as tf
def symbolic_fgs(x, grad, eps=0.3, clipping=True):
"""
FGSM attack.
"""
# signed gradient
normed_grad = K.sign(grad)
# Multiply by constant epsilon
scaled_grad = eps * normed_grad
# Add perturbation to original example to obtain adversarial example
adv_x = K.stop_gradient(x + scaled_grad)
if clipping:
adv_x = K.clip(adv_x, 0, 1)
return adv_x
def symbolic_fg(x, grad, eps=0.3, clipping=True):
"""
FG attack
"""
# Unit vector in direction of gradient
reduc_ind = list(xrange(1, len(x.get_shape())))
normed_grad = grad / tf.sqrt(tf.reduce_sum(tf.square(grad),
reduction_indices=reduc_ind,
keep_dims=True))
# Multiply by constant epsilon
scaled_grad = eps * normed_grad
# Add perturbation to original example to obtain adversarial example
adv_x = K.stop_gradient(x + scaled_grad)
if clipping:
adv_x = K.clip(adv_x, 0, 1)
return adv_x
def iter_fgs(model, x, y, steps, alpha, eps, clipping=True):
"""
I-FGSM attack.
"""
adv_x = x
# iteratively apply the FGSM with small step size
for i in range(steps):
logits = model(adv_x)
grad = gen_grad(adv_x, logits, y)
adv_x = symbolic_fgs(adv_x, grad, alpha, True)
r = adv_x - x
r = K.clip(r, -eps, eps)
adv_x = x+r
if clipping:
adv_x = K.clip(adv_x, 0, 1)
return adv_x