-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognize.py
253 lines (196 loc) · 7.94 KB
/
recognize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#pytorch
from concurrent.futures import thread
from sqlalchemy import null
import torch
from torchvision import transforms
import time
from threading import Thread
#other lib
import sys
import numpy as np
import os
import cv2
sys.path.insert(0, "yolov5_face")
from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import check_img_size, non_max_suppression_face, scale_coords
# Check device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Get model detect
## Case 1:
#model = attempt_load("yolov5_face/yolov5s-face.pt", map_location=device)
## Case 2:
model = attempt_load("yolov5_face/yolov5n-0.5.pt", map_location=device)
# Get model recognition
## Case 1:
from insightface.insight_face import iresnet100
weight = torch.load("insightface/resnet100_backbone.pth", map_location = device)
model_emb = iresnet100()
## Case 2:
# from insightface.insight_face import iresnet18
# weight = torch.load("insightface/resnet18_backbone.pth", map_location = device)
# model_emb = iresnet18()
model_emb.load_state_dict(weight)
model_emb.to(device)
model_emb.eval()
face_preprocess = transforms.Compose([
transforms.ToTensor(), # input PIL => (3,56,56), /255.0
transforms.Resize((112, 112)),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
isThread = True
score = 0
name = null
# Resize image
def resize_image(img0, img_size):
h0, w0 = img0.shape[:2] # orig hw
r = img_size / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)
imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size
img = letterbox(img0, new_shape=imgsz)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return img
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
coords[:, :10] /= gain
#clip_coords(coords, img0_shape)
coords[:, 0].clamp_(0, img0_shape[1]) # x1
coords[:, 1].clamp_(0, img0_shape[0]) # y1
coords[:, 2].clamp_(0, img0_shape[1]) # x2
coords[:, 3].clamp_(0, img0_shape[0]) # y2
coords[:, 4].clamp_(0, img0_shape[1]) # x3
coords[:, 5].clamp_(0, img0_shape[0]) # y3
coords[:, 6].clamp_(0, img0_shape[1]) # x4
coords[:, 7].clamp_(0, img0_shape[0]) # y4
coords[:, 8].clamp_(0, img0_shape[1]) # x5
coords[:, 9].clamp_(0, img0_shape[0]) # y5
return coords
def get_face(input_image):
# Parameters
size_convert = 128
conf_thres = 0.4
iou_thres = 0.5
# Resize image
img = resize_image(input_image.copy(), size_convert)
# Via yolov5-face
with torch.no_grad():
pred = model(img[None, :])[0]
# Apply NMS
det = non_max_suppression_face(pred, conf_thres, iou_thres)[0]
bboxs = np.int32(scale_coords(img.shape[1:], det[:, :4], input_image.shape).round().cpu().numpy())
landmarks = np.int32(scale_coords_landmarks(img.shape[1:], det[:, 5:15], input_image.shape).round().cpu().numpy())
return bboxs, landmarks
def get_feature(face_image, training = True):
# Convert to RGB
face_image = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
# Preprocessing image BGR
face_image = face_preprocess(face_image).to(device)
# Via model to get feature
with torch.no_grad():
if training:
emb_img_face = model_emb(face_image[None, :])[0].cpu().numpy()
else:
emb_img_face = model_emb(face_image[None, :]).cpu().numpy()
# Convert to array
images_emb = emb_img_face/np.linalg.norm(emb_img_face)
return images_emb
def read_features(root_fearure_path = "feature/face_features.npz"):
data = np.load(root_fearure_path, allow_pickle=True)
images_name = data["arr1"]
images_emb = data["arr2"]
return images_name, images_emb
def recognition(face_image):
global isThread, score, name
# Get feature from face
query_emb = (get_feature(face_image, training=False))
# Read features
images_names, images_embs = read_features()
scores = (query_emb @ images_embs.T)[0]
id_min = np.argmax(scores)
score = scores[id_min]
name = images_names[id_min]
isThread = True
print("successful")
def main():
global isThread, score, name
# Open camera
cap = cv2.VideoCapture(0)
start = time.time_ns()
frame_count = 0
fps = -1
unknown_cnt = 0
# Save video
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
size = (frame_width, frame_height)
# Read until video is completed
while(True):
# Capture frame-by-frame
_, frame = cap.read()
# Get faces
bboxs, landmarks = get_face(frame)
h, w, c = frame.shape
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
# Get boxs
for i in range(len(bboxs)):
# Get location face
x1, y1, x2, y2 = bboxs[i]
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 146, 230), 2)
# Landmarks
for x in range(5):
point_x = int(landmarks[i][2 * x])
point_y = int(landmarks[i][2 * x + 1])
cv2.circle(frame, (point_x, point_y), tl+1, clors[x], -1)
# Get face from location
if isThread == True:
isThread = False
# Recognition
face_image = frame[y1:y2, x1:x2]
thread = Thread(target=recognition, args=(face_image,))
thread.start()
if name == null:
continue
else:
if score < 0.25:
caption= "UN_KNOWN"
unknown_cnt += 1 # Count Unknowns
cv2.imwrite('./dataset/unknown/'+caption+'%d.jpg'%(unknown_cnt), face_image) # Capture face image
else:
caption = f"{name.split('_')[0].upper()}:{score:.2f}"
t_size = cv2.getTextSize(caption, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0]
cv2.rectangle(frame, (x1, y1), (x1 + t_size[0], y1 + t_size[1]), (0, 146, 230), -1)
cv2.putText(frame, caption, (x1, y1 + t_size[1]), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2)
# Count fps
frame_count += 1
if frame_count >= 30:
end = time.time_ns()
fps = 1e9 * frame_count / (end - start)
frame_count = 0
start = time.time_ns()
if fps > 0:
fps_label = "FPS: %.2f" % fps
cv2.putText(frame, fps_label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow("Face Recognition", frame)
# Press Q on keyboard to exit
if cv2.waitKey(25) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
cv2.waitKey(0)
if __name__=="__main__":
main()