forked from kpertsch/rlds_dataset_builder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_dataset.py
88 lines (68 loc) · 2.41 KB
/
visualize_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import wandb
import matplotlib.pyplot as plt
import numpy as np
import tensorflow_datasets as tfds
import argparse
import tqdm
import importlib
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # suppress debug warning messages
WANDB_ENTITY = "erikbauer"
WANDB_PROJECT = "vis_rlds"
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_name", help="name of the dataset to visualize")
parser.add_argument("--data_dir", help="directory the dataset is saved in")
args = parser.parse_args()
if WANDB_ENTITY is not None:
render_wandb = True
wandb.init(entity=WANDB_ENTITY, project=WANDB_PROJECT)
else:
render_wandb = False
# create TF dataset
dataset_name = args.dataset_name
print(f"Visualizing data from dataset: {dataset_name}")
module = importlib.import_module(dataset_name)
ds = tfds.load(dataset_name, split="train", data_dir=args.data_dir)
ds = ds.shuffle(100)
# visualize episodes
for i, episode in enumerate(ds.take(5)):
print("Visualizing episode", i)
images = []
for step in episode["steps"]:
images.append(step["observation"]["image"].numpy())
image_strip = np.concatenate(images[::4], axis=1)
caption = step["language_instruction"].numpy().decode() + " (temp. downsampled 4x)"
if render_wandb:
wandb.log({f"image_{i}": wandb.Image(image_strip, caption=caption)})
else:
plt.figure()
plt.imshow(image_strip)
plt.title(caption)
# visualize action and state statistics
actions, states = [], []
for episode in tqdm.tqdm(ds.take(500)):
for step in episode["steps"]:
actions.append(step["action"].numpy())
states.append(step["observation"]["state"].numpy())
actions = np.array(actions)
states = np.array(states)
action_mean = actions.mean(0)
state_mean = states.mean(0)
def vis_stats(vector, vector_mean, tag):
assert len(vector.shape) == 2
assert len(vector_mean.shape) == 1
assert vector.shape[1] == vector_mean.shape[0]
print(f"Visualizing {tag}")
n_elems = vector.shape[1]
fig = plt.figure(tag, figsize=(5 * n_elems, 5))
for elem in range(n_elems):
plt.subplot(1, n_elems, elem + 1)
plt.hist(vector[:, elem], bins=20)
plt.title(vector_mean[elem])
if render_wandb:
wandb.log({tag: wandb.Image(fig)})
print(f"Finished visualizing {tag}")
vis_stats(actions, action_mean, "action_stats")
vis_stats(states, state_mean, "state_stats")
if not render_wandb:
plt.show()