diff --git a/Dockerfile b/Dockerfile index 4735a11e9b..e2a054531d 100644 --- a/Dockerfile +++ b/Dockerfile @@ -85,7 +85,7 @@ ARG WITH_SQLFLOW_MODELS="ON" RUN if [ "${WITH_SQLFLOW_MODELS:-ON}" = "ON" ]; then \ git clone https://github.com/sql-machine-learning/models.git && \ cd models && \ - git checkout 58f4c137129e2bc749320bafcc8fddb7c737fed9 && \ + git checkout a3559618a013820385f43307261ad34351da2fbf && \ bash -c "source activate sqlflow-dev && python setup.py install" && \ cd .. && \ rm -rf models; \ diff --git a/cmd/sqlflowserver/main_test.go b/cmd/sqlflowserver/main_test.go index 26726d26e0..9168355c78 100644 --- a/cmd/sqlflowserver/main_test.go +++ b/cmd/sqlflowserver/main_test.go @@ -290,11 +290,11 @@ func TestEnd2EndMySQL(t *testing.T) { // Cases using feature derivation t.Run("CaseTrainTextClassificationIR", CaseTrainTextClassificationIR) t.Run("CaseTrainTextClassificationFeatureDerivation", CaseTrainTextClassificationFeatureDerivation) - t.Run("CaseXgboostFeatureDerivation", CaseXgboostFeatureDerivation) + t.Run("CaseXGBoostFeatureDerivation", CaseXGBoostFeatureDerivation) t.Run("CaseTrainFeatureDerevation", CaseTrainFeatureDerevation) } -func CaseXgboostFeatureDerivation(t *testing.T) { +func CaseXGBoostFeatureDerivation(t *testing.T) { a := assert.New(t) trainSQL := `SELECT * FROM housing.train TO TRAIN xgboost.gbtree diff --git a/python/sqlflow_submitter/tensorflow/train.py b/python/sqlflow_submitter/tensorflow/train.py index 16e09ca992..9ea1a1e9aa 100644 --- a/python/sqlflow_submitter/tensorflow/train.py +++ b/python/sqlflow_submitter/tensorflow/train.py @@ -96,14 +96,14 @@ def validate_input_fn(batch_size): return dataset.batch(batch_size) if is_keras_model: - classifier.compile(optimizer=classifier.default_optimizer(), - loss=classifier.default_loss(), + classifier.compile(optimizer=classifier.optimizer(), + loss=classifier.loss(), metrics=["accuracy"]) if hasattr(classifier, 'sqlflow_train_loop'): classifier.sqlflow_train_loop(train_input_fn(batch_size)) else: classifier.fit(train_input_fn(batch_size), - epochs=epochs if epochs else classifier.default_training_epochs(), + epochs=epochs if epochs else 1, verbose=verbose) classifier.save_weights(save, save_format="h5") if label_meta["feature_name"] != "" and validate_select != "":