From 8316039656773f3d033fae0f17d933a3a8ba3353 Mon Sep 17 00:00:00 2001 From: HongwuLin Date: Tue, 30 Jun 2020 23:18:47 +0800 Subject: [PATCH] Release playground iamge and update doc --- dev.md | 9 +++++++-- provision.bash | 1 + start.bash | 26 +++++++++++++++++--------- 3 files changed, 25 insertions(+), 11 deletions(-) diff --git a/dev.md b/dev.md index a7733b8..1727ece 100644 --- a/dev.md +++ b/dev.md @@ -49,9 +49,14 @@ According to this [tutorial](https://www.techrepublic.com/article/how-to-import- To run SQLFlow on a desktop computer running Windows, Linux, or macOS, you need to download -1. the released `SQLFlowPlayground.ova`, directly download from [here](http://cdn.sqlflow.tech/latest/SQLFlowPlayground.ova), or use wget: +1. the released VirtualBox `.ova` file, you have two choices: + - the minimized image (about 600M): shipped with all bootstrap files but no dependency docker images. When you start the playground, you will wait for a while to download the latest docker images, minikube framework and other packages. ```bash - wget -c http://cdn.sqlflow.tech/latest/SQLFlowPlayground.ova + wget -c http://cdn.sqlflow.tech/latest/SQLFlowPlaygroundBare.ova + ``` + - the full installed image (about 2G): with all dependencies, no extra downloading is needed when starting. Note that in this case, the images will not be updated automatically, you will do it manually when needed. + ```bash + wget -c http://cdn.sqlflow.tech/latest/SQLFlowPlaygroundFull.ova ``` 1. optional, the [sqlflow](https://github.com/sql-machine-learning/sqlflow/blob/develop/doc/run/cli.md) command-line tool released by SQLFlow CI. diff --git a/provision.bash b/provision.bash index 2f1fed8..e7e1f9c 100755 --- a/provision.bash +++ b/provision.bash @@ -61,6 +61,7 @@ if which minikube > /dev/null; then echo "minikube installed. Skip." else $VAGRANT_SHARED_FOLDER/sqlflow/scripts/travis/install_minikube.sh + minikube config set WantUpdateNotification false fi echo "Done." diff --git a/start.bash b/start.bash index 1d64e74..0125ef5 100755 --- a/start.bash +++ b/start.bash @@ -29,14 +29,22 @@ fi filebase=/root/scripts echo "Docker pull dependency images, you can comment this if already have them ..." -# c.f. https://github.com/sql-machine-learning/sqlflow/blob/develop/.travis.yml -docker pull sqlflow/sqlflow:jupyter -docker pull sqlflow/sqlflow:mysql -docker pull sqlflow/sqlflow:server -docker pull sqlflow/sqlflow:step -docker pull argoproj/argoexec:v2.7.7 -docker pull argoproj/argocli:v2.7.7 -docker pull argoproj/workflow-controller:v2.7.7 +if [[ -d "/root/.cache" ]]; then + echo "Cache found at /root/.cache ..." + if [[ ! -f "/root/.cache/.loaded" ]]; then + find /root/.cache/* | xargs -I'{}' docker load -i '{}' + touch /root/.cache/.loaded + fi +else + # c.f. https://github.com/sql-machine-learning/sqlflow/blob/develop/.travis.yml + docker pull sqlflow/sqlflow:jupyter + docker pull sqlflow/sqlflow:mysql + docker pull sqlflow/sqlflow:server + docker pull sqlflow/sqlflow:step + docker pull argoproj/argoexec:v2.7.7 + docker pull argoproj/argocli:v2.7.7 + docker pull argoproj/workflow-controller:v2.7.7 +fi echo "Done." # NOTE: According to https://stackoverflow.com/a/16619261/724872, @@ -167,7 +175,7 @@ Congratulations, SQLFlow playground is up! Access Jupyter Notebook at: http://localhost:8888 Access Kubernetes Dashboard at: http://localhost:9000 Access Argo Dashboard at: http://localhost:9001 -Access SQLFlow with cli: ./sqlflow --datasource="\"$mysql_addr\"" +Access SQLFlow with cli: ./sqlflow --data-source="\"$mysql_addr\"" Stop minikube with: minikube stop Stop vagrant vm with: vagrant halt