-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalign_audio.py
120 lines (91 loc) · 3.35 KB
/
align_audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
import h5py
import sys
from scipy import signal
import os
SAMPLE_RATE = 44100
def align_clip(clip, trigger_freq=16000, threshold=1250,
box_width=50, percent_required=.5, offset=200):
w = 5.0
s = 1.0
M = np.floor(2. * w * s * SAMPLE_RATE / trigger_freq)
wavelet = signal.morlet(M, w=5.0, s=1.0, complete=True)
resp = np.abs(signal.convolve(clip[:,0], wavelet, mode='same'))
box = np.array([1.0 for _ in range(box_width)])
above = resp > threshold
counts = signal.convolve(above, box,mode='valid')
counts = np.append(counts, np.zeros(box.shape[0] - 1))
candidates = np.logical_and(above, counts > (percent_required * box_width))
if np.where(candidates)[0].size > 0:
start_index = max(0, np.where(candidates)[0][0] - offset)
else:
start_index = 0
print "BAD SAMPLE?"
result = np.zeros(clip.shape, dtype=clip.dtype)
result[0:clip.shape[0] - start_index, :] = clip[start_index::, :]
return result
def compress_h5(file_name):
data = h5py.File(file_name, 'r')
compressed = h5py.File(file_name+".h5", 'w')
for item in data.items():
dset = compressed.create_dataset(item[0], data[item[0]].shape,
dtype=data[item[0]].dtype,
compression="lzf")
dset[...] = data[item[0]][...]
compressed.close()
def align_h5(file_name):
""" Add alligned audio data to an existing h5 file. """
data = h5py.File(file_name, 'r+')
if 'audio_aligned' in data:
del data['audio_aligned']
dset = data.create_dataset("audio_aligned", data['audio'].shape,
dtype=data['audio'].dtype)
for i in range(data['audio'].shape[0]):
dset[i, ...] = align_clip(data['audio'][i,...])
data.close()
def demo():
""" show example of an alignment """
import matplotlib.pyplot as plt
data = h5py.File(sys.argv[1], 'r')
# Sample rate and desired cutoff frequencies (in Hz).
clip = data['audio'][100, ...]
plt.subplot(4,1,1)
f, t, Sxx = signal.spectrogram(clip[:,0], 44100,
nperseg=256,
noverlap =255)
plt.pcolormesh(t, f, np.log(1 + Sxx))
plt.axis('tight')
plt.ylabel('Frequency [Hz]')
plt.xlabel('Time [sec]')
plt.subplot(4,1,2)
plt.plot(clip[:,0])
plt.axis('tight')
plt.subplot(4,1,3)
aligned = align_clip(clip)
f, t, Sxx = signal.spectrogram(aligned[:,0], 44100,
nperseg=256,
noverlap=255)
plt.pcolormesh(t, f, np.log(1 + Sxx))
plt.axis('tight')
plt.ylabel('Frequency [Hz]')
plt.xlabel('Time [sec]')
plt.subplot(4,1,4)
plt.plot(aligned[:,0])
plt.axis('tight')
plt.show()
def compress_all():
files = [#'isat143a', 'isat143b',
'isat231a', 'isat231b',
'isat243a', 'isat243b', 'isat246a', 'isat246b',
'isat246c', 'isat248a', 'isat248b', 'isat248c',
'isat250a', 'isat250b', 'roboA', 'roboB', 'roboC',
'roboD', 'roboE']
for f in files:
print f
compress_h5(f)
os.remove(f)
if __name__ == "__main__":
#demo()
#compress_all()
#compress_h5(sys.argv[1])
align_h5(sys.argv[1])