.. customcarditem::
:header: PyTorch ๊ธฐ๋ณธ ์ตํ๊ธฐ
:card_description: PyTorch๋ก ์ ์ฒด ML์ํฌํ๋ก์ฐ๋ฅผ ๊ตฌ์ถํ๊ธฐ ์ํ ๋จ๊ณ๋ณ ํ์ต ๊ฐ์ด๋์
๋๋ค.
:image: _static/img/thumbnails/cropped/60-min-blitz.png
:link: beginner/basics/intro.html
:tags: Getting-Started
.. customcarditem::
:header: ์์ ๋ก ๋ฐฐ์ฐ๋ ํ์ดํ ์น(PyTorch)
:card_description: ํํ ๋ฆฌ์ผ์ ํฌํจ๋ ์์ ๋ค๋ก PyTorch์ ๊ธฐ๋ณธ ๊ฐ๋
์ ์ดํดํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/learning-pytorch-with-examples.png
:link: beginner/pytorch_with_examples.html
:tags: Getting-Started
.. customcarditem::
:header: torch.nn์ด ์ค์ ๋ก ๋ฌด์์ธ๊ฐ์?
:card_description: torch.nn์ ์ฌ์ฉํ์ฌ ์ ๊ฒฝ๋ง์ ์์ฑํ๊ณ ํ์ตํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/torch-nn.png
:link: beginner/nn_tutorial.html
:tags: Getting-Started
.. customcarditem::
:header: TensorBoard๋ก ๋ชจ๋ธ, ๋ฐ์ดํฐ, ํ์ต ์๊ฐํํ๊ธฐ
:card_description: TensorBoard๋ก ๋ฐ์ดํฐ ๋ฐ ๋ชจ๋ธ ๊ต์ก์ ์๊ฐํํ๋ ๋ฐฉ๋ฒ์ ๋ฐฐ์๋๋ค.
:image: _static/img/thumbnails/cropped/visualizing-with-tensorboard.png
:link: intermediate/tensorboard_tutorial.html
:tags: Interpretability,Getting-Started,Tensorboard
.. customcarditem::
:header: TorchVision ๊ฐ์ฒด ๊ฒ์ถ ๋ฏธ์ธ์กฐ์ (Finetuning) ํํ ๋ฆฌ์ผ
:card_description: ์ด๋ฏธ ํ๋ จ๋ Mask R-CNN ๋ชจ๋ธ์ ๋ฏธ์ธ์กฐ์ ํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/TorchVision-Object-Detection-Finetuning-Tutorial.png
:link: intermediate/torchvision_tutorial.html
:tags: Image/Video
.. customcarditem::
:header: ์ปดํจํฐ ๋น์ ์ ์ํ ์ ์ดํ์ต(Transfer Learning) ํํ ๋ฆฌ์ผ
:card_description: ์ ์ดํ์ต์ผ๋ก ์ด๋ฏธ์ง ๋ถ๋ฅ๋ฅผ ์ํ ํฉ์ฑ๊ณฑ ์ ๊ฒฝ๋ง์ ํ์ตํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/Transfer-Learning-for-Computer-Vision-Tutorial.png
:link: beginner/transfer_learning_tutorial.html
:tags: Image/Video
.. customcarditem::
:header: Optimizing Vision Transformer Model
:card_description: Apply cutting-edge, attention-based transformer models to computer vision tasks.
:image: _static/img/thumbnails/cropped/60-min-blitz.png
:link: beginner/vt_tutorial.html
:tags: Image/Video
.. customcarditem::
:header: ์ ๋์ ์์ ์์ฑ(Adversarial Example Generation)
:card_description: ๊ฐ์ฅ ๋ง์ด ์ฌ์ฉ๋๋ ๊ณต๊ฒฉ ๋ฐฉ๋ฒ ์ค ํ๋์ธ FGSM (Fast Gradient Sign Attack)์ ์ด์ฉํด MNIST ๋ถ๋ฅ๊ธฐ๋ฅผ ์์ด๋ ๋ฐฉ๋ฒ์ ๋ฐฐ์๋๋ค.
:image: _static/img/thumbnails/cropped/Adversarial-Example-Generation.png
:link: beginner/fgsm_tutorial.html
:tags: Image/Video
.. customcarditem::
:header: DCGAN Tutorial
:card_description: Train a generative adversarial network (GAN) to generate new celebrities.
:image: _static/img/thumbnails/cropped/DCGAN-Tutorial.png
:link: beginner/dcgan_faces_tutorial.html
:tags: Image/Video
.. customcarditem::
:header: Spatial Transformer Networks Tutorial
:card_description: Learn how to augment your network using a visual attention mechanism.
:image: _static/img/stn/Five.gif
:link: intermediate/spatial_transformer_tutorial.html
:tags: Image/Video
.. customcarditem::
:header: Audio IO
:card_description: Learn to load data with torchaudio.
:image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
:link: beginner/audio_io_tutorial.html
:tags: Audio
.. customcarditem::
:header: Audio Resampling
:card_description: Learn to resample audio waveforms using torchaudio.
:image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
:link: beginner/audio_resampling_tutorial.html
:tags: Audio
.. customcarditem::
:header: Audio Data Augmentation
:card_description: Learn to apply data augmentations using torchaudio.
:image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
:link: beginner/audio_data_augmentation_tutorial.html
:tags: Audio
.. customcarditem::
:header: Audio Feature Extractions
:card_description: Learn to extract features using torchaudio.
:image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
:link: beginner/audio_feature_extractions_tutorial.html
:tags: Audio
.. customcarditem::
:header: Audio Feature Augmentation
:card_description: Learn to augment features using torchaudio.
:image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
:link: beginner/audio_feature_augmentation_tutorial.html
:tags: Audio
.. customcarditem::
:header: Audio Datasets
:card_description: Learn to use torchaudio datasets.
:image: _static/img/thumbnails/cropped/torchaudio-Tutorial.png
:link: beginner/audio_datasets_tutorial.html
:tags: Audio
.. customcarditem::
:header: Automatic Speech Recognition with Wav2Vec2 in torchaudio
:card_description: Learn how to use torchaudio's pretrained models for building a speech recognition application.
:image: _static/img/thumbnails/cropped/torchaudio-asr.png
:link: intermediate/speech_recognition_pipeline_tutorial.html
:tags: Audio
.. customcarditem::
:header: Speech Command Classification
:card_description: Learn how to correctly format an audio dataset and then train/test an audio classifier network on the dataset.
:image: _static/img/thumbnails/cropped/torchaudio-speech.png
:link: intermediate/speech_command_classification_with_torchaudio_tutorial.html
:tags: Audio
.. customcarditem::
:header: Text-to-Speech with torchaudio
:card_description: Learn how to use torchaudio's pretrained models for building a text-to-speech application.
:image: _static/img/thumbnails/cropped/torchaudio-speech.png
:link: intermediate/text_to_speech_with_torchaudio.html
:tags: Audio
.. customcarditem::
:header: Forced Alignment with Wav2Vec2 in torchaudio
:card_description: Learn how to use torchaudio's Wav2Vec2 pretrained models for aligning text to speech
:image: _static/img/thumbnails/cropped/torchaudio-alignment.png
:link: intermediate/forced_alignment_with_torchaudio_tutorial.html
:tags: Audio
.. customcarditem::
:header: nn.Transformer์ TorchText๋ก ์ํ์ค-ํฌ-์ํ์ค ๋ชจ๋ธ๋งํ๊ธฐ
:card_description: nn.Transformer ๋ชจ๋์ ์ฌ์ฉํ์ฌ ์ด๋ป๊ฒ ์ํ์ค-ํฌ-์ํ์ค(Seq-to-Seq) ๋ชจ๋ธ์ ํ์ตํ๋์ง ๋ฐฐ์๋๋ค.
:image: _static/img/thumbnails/cropped/Sequence-to-Sequence-Modeling-with-nnTransformer-andTorchText.png
:link: beginner/transformer_tutorial.html
:tags: Text
.. customcarditem::
:header: ๊ธฐ์ด๋ถํฐ ์์ํ๋ NLP: ๋ฌธ์-๋จ์ RNN์ผ๋ก ์ด๋ฆ ๋ถ๋ฅํ๊ธฐ
:card_description: torchtext๋ฅผ ์ฌ์ฉํ์ง ์๊ณ ๊ธฐ๋ณธ์ ์ธ ๋ฌธ์-๋จ์ RNN์ ์ฌ์ฉํ์ฌ ๋จ์ด๋ฅผ ๋ถ๋ฅํ๋ ๋ชจ๋ธ์ ๊ธฐ์ด๋ถํฐ ๋ง๋ค๊ณ ํ์ตํฉ๋๋ค. ์ด 3๊ฐ๋ก ์ด๋ค์ง ํํ ๋ฆฌ์ผ ์๋ฆฌ์ฆ์ ์ฒซ๋ฒ์งธ ํธ์
๋๋ค.
:image: _static/img/thumbnails/cropped/NLP-From-Scratch-Classifying-Names-with-a-Character-Level-RNN.png
:link: intermediate/char_rnn_classification_tutorial
:tags: Text
.. customcarditem::
:header: ๊ธฐ์ด๋ถํฐ ์์ํ๋ NLP: ๋ฌธ์-๋จ์ RNN์ผ๋ก ์ด๋ฆ ์์ฑํ๊ธฐ
:card_description: ๋ฌธ์-๋จ์ RNN์ ์ฌ์ฉํ์ฌ ์ด๋ฆ์ ๋ถ๋ฅํด๋ดค์ผ๋, ์ด๋ฆ์ ์์ฑํ๋ ๋ฐฉ๋ฒ์ ํ์ตํฉ๋๋ค. ์ด 3๊ฐ๋ก ์ด๋ค์ง ํํ ๋ฆฌ์ผ ์๋ฆฌ์ฆ ์ค ๋๋ฒ์งธ ํธ์
๋๋ค.
:image: _static/img/thumbnails/cropped/NLP-From-Scratch-Generating-Names-with-a-Character-Level-RNN.png
:link: intermediate/char_rnn_generation_tutorial.html
:tags: Text
.. customcarditem::
:header: ๊ธฐ์ด๋ถํฐ ์์ํ๋ NLP: ์ํ์ค-ํฌ-์ํ์ค ๋คํธ์ํฌ์ ์ดํ
์
์ ์ด์ฉํ ๋ฒ์ญ
:card_description: โ๊ธฐ์ด๋ถํฐ ์์ํ๋ NLPโ์ ์ธ๋ฒ์งธ์ด์ ๋ง์ง๋ง ํธ์ผ๋ก, NLP ๋ชจ๋ธ๋ง ์์
์ ์ํ ๋ฐ์ดํฐ ์ ์ฒ๋ฆฌ์ ์ฌ์ฉํ ์์ฒด ํด๋์ค์ ํจ์๋ค์ ์์ฑํด๋ณด๊ฒ ์ต๋๋ค.
:image: _static/img/thumbnails/cropped/NLP-From-Scratch-Translation-with-a-Sequence-to-Sequence-Network-and-Attention.png
:link: intermediate/seq2seq_translation_tutorial.html
:tags: Text
.. customcarditem::
:header: torchtext๋ก ํ
์คํธ ๋ถ๋ฅํ๊ธฐ
:card_description: torchtext ๋ผ์ด๋ธ๋ฌ๋ฆฌ๋ฅผ ์ฌ์ฉํ์ฌ ์ด๋ป๊ฒ ํ
์คํธ ๋ถ๋ฅ ๋ถ์์ ์ํ ๋ฐ์ดํฐ์
์ ๋ง๋๋์ง๋ฅผ ์ดํด๋ด
๋๋ค.
:image: _static/img/thumbnails/cropped/Text-Classification-with-TorchText.png
:link: beginner/text_sentiment_ngrams_tutorial.html
:tags: Text
.. customcarditem::
:header: Language Translation with Transformer
:card_description: Train a language translation model from scratch using Transformer.
:image: _static/img/thumbnails/cropped/Language-Translation-with-TorchText.png
:link: beginner/translation_transformer.html
:tags: Text
.. customcarditem::
:header: ๊ฐํ ํ์ต(DQN) ํํ ๋ฆฌ์ผ
:card_description: PyTorch๋ฅผ ์ฌ์ฉํ์ฌ OpenAI Gym์ CartPole-v0 ํ์คํฌ์์ DQN(Deep Q Learning) ์์ด์ ํธ๋ฅผ ํ์ตํ๋ ๋ฐฉ๋ฒ์ ์ดํด๋ด
๋๋ค.
:image: _static/img/cartpole.gif
:link: intermediate/reinforcement_q_learning.html
:tags: Reinforcement-Learning
.. customcarditem::
:header: Train a Mario-playing RL Agent
:card_description: Use PyTorch to train a Double Q-learning agent to play Mario.
:image: _static/img/mario.gif
:link: intermediate/mario_rl_tutorial.html
:tags: Reinforcement-Learning
.. customcarditem::
:header: Flask๋ฅผ ์ฌ์ฉํ์ฌ Python์์ PyTorch๋ฅผ REST API๋ก ๋ฐฐํฌํ๊ธฐ
:card_description: Flask๋ฅผ ์ฌ์ฉํ์ฌ PyTorch ๋ชจ๋ธ์ ๋ฐฐํฌํ๊ณ , ๋ฏธ๋ฆฌ ํ์ต๋ DenseNet 121 ๋ชจ๋ธ์ ์์ ๋ก ํ์ฉํ์ฌ ๋ชจ๋ธ ์ถ๋ก (inference)์ ์ํ REST API๋ฅผ ๋ง๋ค์ด๋ณด๊ฒ ์ต๋๋ค.
:image: _static/img/thumbnails/cropped/Deploying-PyTorch-in-Python-via-a-REST-API-with-Flask.png
:link: intermediate/flask_rest_api_tutorial.html
:tags: Production
.. customcarditem::
:header: TorchScript ์๊ฐ
:card_description: C++๊ณผ ๊ฐ์ ๊ณ ์ฑ๋ฅ ํ๊ฒฝ์์ ์คํํ ์ ์๋๋ก (nn.Module์ ํ์ ํด๋์ค์ธ) PyTorch ๋ชจ๋ธ์ ์ค๊ฐ ํํ(intermediate representation)์ ์ ๊ณตํ๋ TorchScript๋ฅผ ์๊ฐํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/Introduction-to-TorchScript.png
:link: beginner/Intro_to_TorchScript_tutorial.html
:tags: Production,TorchScript
.. customcarditem::
:header: C++์์ TorchScript ๋ชจ๋ธ ๋ก๋ฉํ๊ธฐ
:card_description: PyTorch๊ฐ ์ด๋ป๊ฒ ๊ธฐ์กด์ Python ๋ชจ๋ธ์ ์ง๋ ฌํ๋ ํํ์ผ๋ก ๋ณํํ์ฌ Python ์์กด์ฑ ์์ด ์์ํ๊ฒ C++์์ ๋ถ๋ฌ์ฌ ์ ์๋์ง ๋ฐฐ์๋๋ค.
:image: _static/img/thumbnails/cropped/Loading-a-TorchScript-Model-in-Cpp.png
:link: advanced/cpp_export.html
:tags: Production,TorchScript
.. customcarditem::
:header: (์ ํ) PyTorch ๋ชจ๋ธ์ ONNX์ผ๋ก ๋ณํํ๊ณ ONNX ๋ฐํ์์์ ์คํํ๊ธฐ
:card_description: PyTorch๋ก ์ ์ํ ๋ชจ๋ธ์ ONNX ํ์์ผ๋ก ๋ณํํ๊ณ ONNX ๋ฐํ์์์ ์คํํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/optional-Exporting-a-Model-from-PyTorch-to-ONNX-and-Running-it-using-ONNX-Runtime.png
:link: advanced/super_resolution_with_onnxruntime.html
:tags: Production
.. customcarditem::
:header: Building a Convolution/Batch Norm fuser in FX
:card_description: Build a simple FX pass that fuses batch norm into convolution to improve performance during inference.
:image: _static/img/thumbnails/cropped/Deploying-PyTorch-in-Python-via-a-REST-API-with-Flask.png
:link: intermediate/fx_conv_bn_fuser.html
:tags: FX
.. customcarditem::
:header: Building a Simple Performance Profiler with FX
:card_description: Build a simple FX interpreter to record the runtime of op, module, and function calls and report statistics
:image: _static/img/thumbnails/cropped/Deploying-PyTorch-in-Python-via-a-REST-API-with-Flask.png
:link: intermediate/fx_profiling_tutorial.html
:tags: FX
.. customcarditem::
:header: (๋ฒ ํ) PyTorch์ Channels Last ๋ฉ๋ชจ๋ฆฌ ํ์
:card_description: Channels Last ๋ฉ๋ชจ๋ฆฌ ํ์์ ๋ํ ๊ฐ์๋ฅผ ํ์ธํ๊ณ ์ฐจ์ ์์๋ฅผ ์ ์งํ๋ฉฐ ๋ฉ๋ชจ๋ฆฌ ์์ NCHW ํ
์๋ฅผ ์ ๋ ฌํ๋ ๋ฐฉ๋ฒ์ ์ดํดํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/experimental-Channels-Last-Memory-Format-in-PyTorch.png
:link: intermediate/memory_format_tutorial.html
:tags: Memory-Format,Best-Practice,Frontend-APIs
.. customcarditem::
:header: Using the PyTorch C++ Frontend
:card_description: Walk through an end-to-end example of training a model with the C++ frontend by training a DCGAN โ a kind of generative model โ to generate images of MNIST digits.
:image: _static/img/thumbnails/cropped/Using-the-PyTorch-Cpp-Frontend.png
:link: advanced/cpp_frontend.html
:tags: Frontend-APIs,C++
.. customcarditem::
:header: Custom C++ and CUDA Extensions
:card_description: Create a neural network layer with no parameters using numpy. Then use scipy to create a neural network layer that has learnable weights.
:image: _static/img/thumbnails/cropped/Custom-Cpp-and-CUDA-Extensions.png
:link: advanced/cpp_extension.html
:tags: Extending-PyTorch,Frontend-APIs,C++,CUDA
.. customcarditem::
:header: Extending TorchScript with Custom C++ Operators
:card_description: Implement a custom TorchScript operator in C++, how to build it into a shared library, how to use it in Python to define TorchScript models and lastly how to load it into a C++ application for inference workloads.
:image: _static/img/thumbnails/cropped/Extending-TorchScript-with-Custom-Cpp-Operators.png
:link: advanced/torch_script_custom_ops.html
:tags: Extending-PyTorch,Frontend-APIs,TorchScript,C++
.. customcarditem::
:header: Extending TorchScript with Custom C++ Classes
:card_description: This is a continuation of the custom operator tutorial, and introduces the API weโve built for binding C++ classes into TorchScript and Python simultaneously.
:image: _static/img/thumbnails/cropped/Extending-TorchScript-with-Custom-Cpp-Classes.png
:link: advanced/torch_script_custom_classes.html
:tags: Extending-PyTorch,Frontend-APIs,TorchScript,C++
.. customcarditem::
:header: Dynamic Parallelism in TorchScript
:card_description: This tutorial introduces the syntax for doing *dynamic inter-op parallelism* in TorchScript.
:image: _static/img/thumbnails/cropped/TorchScript-Parallelism.jpg
:link: advanced/torch-script-parallelism.html
:tags: Frontend-APIs,TorchScript,C++
.. customcarditem::
:header: Autograd in C++ Frontend
:card_description: The autograd package helps build flexible and dynamic nerural netorks. In this tutorial, exploreseveral examples of doing autograd in PyTorch C++ frontend
:image: _static/img/thumbnails/cropped/Autograd-in-Cpp-Frontend.png
:link: advanced/cpp_autograd.html
:tags: Frontend-APIs,C++
.. customcarditem::
:header: Registering a Dispatched Operator in C++
:card_description: The dispatcher is an internal component of PyTorch which is responsible for figuring out what code should actually get run when you call a function like torch::add.
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.PNG
:link: advanced/dispatcher.html
:tags: Extending-PyTorch,Frontend-APIs,C++
.. customcarditem::
:header: Extending Dispatcher For a New Backend in C++
:card_description: Learn how to extend the dispatcher to add a new device living outside of the pytorch/pytorch repo and maintain it to keep in sync with native PyTorch devices.
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.PNG
:link: advanced/extend_dispatcher.html
:tags: Extending-PyTorch,Frontend-APIs,C++
.. customcarditem::
:header: Custom Function Tutorial: Double Backward
:card_description: Learn how to write a custom autograd Function that supports double backward.
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.PNG
:link: intermediate/custom_function_double_backward_tutorial.html
:tags: Extending-PyTorch,Frontend-APIs
.. customcarditem::
:header: Custom Function Tutorial: Fusing Convolution and Batch Norm
:card_description: Learn how to create a custom autograd Function that fuses batch norm into a convolution to improve memory usage.
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.PNG
:link: intermediate/custom_function_conv_bn_tutorial.html
:tags: Extending-PyTorch,Frontend-APIs
.. customcarditem::
:header: Performance Profiling in PyTorch
:card_description: Learn how to use the PyTorch Profiler to benchmark your module's performance.
:image: _static/img/thumbnails/cropped/profiler.png
:link: beginner/profiler.html
:tags: Model-Optimization,Best-Practice,Profiling
.. customcarditem::
:header: Performance Profiling in TensorBoard
:card_description: Learn how to use the TensorBoard plugin to profile and analyze your model's performance.
:image: _static/img/thumbnails/cropped/profiler.png
:link: intermediate/tensorboard_profiler_tutorial.html
:tags: Model-Optimization,Best-Practice,Profiling,TensorBoard
.. customcarditem::
:header: Hyperparameter Tuning Tutorial
:card_description: Learn how to use Ray Tune to find the best performing set of hyperparameters for your model.
:image: _static/img/ray-tune.png
:link: beginner/hyperparameter_tuning_tutorial.html
:tags: Model-Optimization,Best-Practice
.. customcarditem::
:header: Optimizing Vision Transformer Model
:card_description: Learn how to use Facebook Data-efficient Image Transformers DeiT and script and optimize it for mobile.
:image: _static/img/thumbnails/cropped/mobile.png
:link: beginner/vt_tutorial.html
:tags: Model-Optimization,Best-Practice,Mobile
.. customcarditem::
:header: Parametrizations Tutorial
:card_description: Learn how to use torch.nn.utils.parametrize to put constriants on your parameters (e.g. make them orthogonal, symmetric positive definite, low-rank...)
:image: _static/img/thumbnails/cropped/parametrizations.png
:link: intermediate/parametrizations.html
:tags: Model-Optimization,Best-Practice
.. customcarditem::
:header: ๊ฐ์ง์น๊ธฐ ๊ธฐ๋ฒ(pruning) ํํ ๋ฆฌ์ผ
:card_description: torch.nn.utils.prune์ ์ฌ์ฉํ์ฌ ์ ๊ฒฝ๋ง์ ํฌ์ํ(sparsify)ํ๋ ๋ฐฉ๋ฒ๊ณผ, ์ด๋ฅผ ํ์ฅํ์ฌ ์ฌ์ฉ์ ์ ์ ๊ฐ์ง์น๊ธฐ ๊ธฐ๋ฒ์ ๊ตฌํํ๋ ๋ฐฉ๋ฒ์ ์์๋ด
๋๋ค.
:image: _static/img/thumbnails/cropped/Pruning-Tutorial.png
:link: intermediate/pruning_tutorial.html
:tags: Model-Optimization,Best-Practice
.. customcarditem::
:header: (๋ฒ ํ) LSTM ๊ธฐ๋ฐ ๋จ์ด ๋จ์ ์ธ์ด ๋ชจ๋ธ์ ๋์ ์์ํ
:card_description: ๊ฐ์ฅ ๊ฐ๋จํ ์์ํ ๊ธฐ๋ฒ์ธ ๋์ ์์ํ(dynamic quantization)๋ฅผ LSTM ๊ธฐ๋ฐ์ ๋จ์ด ์์ธก ๋ชจ๋ธ์ ์ ์ฉํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/experimental-Dynamic-Quantization-on-an-LSTM-Word-Language-Model.png
:link: advanced/dynamic_quantization_tutorial.html
:tags: Text,Quantization,Model-Optimization
.. customcarditem::
:header: (๋ฒ ํ) BERT ๋ชจ๋ธ ๋์ ์์ํํ๊ธฐ
:card_description: BERT(Bidirectional Embedding Representations from Transformers) ๋ชจ๋ธ์ ๋์ ์์ํ(dynamic quantization)๋ฅผ ์ ์ฉํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/experimental-Dynamic-Quantization-on-BERT.png
:link: intermediate/dynamic_quantization_bert_tutorial.html
:tags: Text,Quantization,Model-Optimization
.. customcarditem::
:header: (๋ฒ ํ) ์ปดํจํฐ ๋น์ ํํ ๋ฆฌ์ผ์ ์ํ ์์ํ๋ ์ ์ดํ์ต(Quantized Transfer Learning)
:card_description: ์์ํ๋ ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ์ ์ดํ์ต์ ์ปดํจํฐ ๋น์ ํํ ๋ฆฌ์ผ์ ํ์ฅํฉ๋๋ค.
:image: _static/img/thumbnails/cropped/60-min-blitz.png
:link: intermediate/quantized_transfer_learning_tutorial.html
:tags: Image/Video,Quantization,Model-Optimization
.. customcarditem::
:header: (beta) Static Quantization with Eager Mode in PyTorch
:card_description: This tutorial shows how to do post-training static quantization.
:image: _static/img/thumbnails/cropped/60-min-blitz.png
:link: advanced/static_quantization_tutorial.html
:tags: Quantization
.. customcarditem::
:header: PyTorch Distributed Overview
:card_description: Briefly go over all concepts and features in the distributed package. Use this document to find the distributed training technology that can best serve your application.
:image: _static/img/thumbnails/cropped/PyTorch-Distributed-Overview.png
:link: beginner/dist_overview.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: ๋จ์ผ ๋จธ์ ์ ์ฌ์ฉํ ๋ชจ๋ธ ๋ณ๋ ฌํ ๋ชจ๋ฒ ์ฌ๋ก
:card_description: ๊ฐ๋ณ GPU๋ค์ ์ ์ฒด ๋ชจ๋ธ์ ๋ณต์ ํ๋ ๋์ , ํ๋์ ๋ชจ๋ธ์ ์ฌ๋ฌ GPU์ ๋ถํ ํ์ฌ ๋ถ์ฐํ์ต์ ํ๋ ๋ชจ๋ธ ๋ณ๋ ฌ ์ฒ๋ฆฌ๋ฅผ ๊ตฌํํ๋ ๋ฐฉ๋ฒ์ ๋ฐฐ์๋๋ค.
:image: _static/img/thumbnails/cropped/Model-Parallel-Best-Practices.png
:link: intermediate/model_parallel_tutorial.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Getting Started with Distributed Data Parallel
:card_description: Learn the basics of when to use distributed data paralle versus data parallel and work through an example to set it up.
:image: _static/img/thumbnails/cropped/Getting-Started-with-Distributed-Data-Parallel.png
:link: intermediate/ddp_tutorial.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: PyTorch๋ก ๋ถ์ฐ ์ดํ๋ฆฌ์ผ์ด์
๊ฐ๋ฐํ๊ธฐ
:card_description: PyTorch์ ๋ถ์ฐ ํจํค์ง๋ฅผ ์ค์ ํ๊ณ , ์๋ก ๋ค๋ฅธ ํต์ ์ ๋ต์ ์ฌ์ฉํ๊ณ , ๋ด๋ถ๋ฅผ ์ดํด๋ด
๋๋ค.
:image: _static/img/thumbnails/cropped/Writing-Distributed-Applications-with-PyTorch.png
:link: intermediate/dist_tuto.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Getting Started with Distributed RPC Framework
:card_description: Learn how to build distributed training using the torch.distributed.rpc package.
:image: _static/img/thumbnails/cropped/Getting Started with Distributed-RPC-Framework.png
:link: intermediate/rpc_tutorial.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Implementing a Parameter Server Using Distributed RPC Framework
:card_description: Walk through a through a simple example of implementing a parameter server using PyTorchโs Distributed RPC framework.
:image: _static/img/thumbnails/cropped/Implementing-a-Parameter-Server-Using-Distributed-RPC-Framework.png
:link: intermediate/rpc_param_server_tutorial.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Distributed Pipeline Parallelism Using RPC
:card_description: Demonstrate how to implement distributed pipeline parallelism using RPC
:image: _static/img/thumbnails/cropped/Distributed-Pipeline-Parallelism-Using-RPC.png
:link: intermediate/dist_pipeline_parallel_tutorial.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Implementing Batch RPC Processing Using Asynchronous Executions
:card_description: Learn how to use rpc.functions.async_execution to implement batch RPC
:image: _static/img/thumbnails/cropped/Implementing-Batch-RPC-Processing-Using-Asynchronous-Executions.png
:link: intermediate/rpc_async_execution.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Combining Distributed DataParallel with Distributed RPC Framework
:card_description: Walk through a through a simple example of how to combine distributed data parallelism with distributed model parallelism.
:image: _static/img/thumbnails/cropped/Combining-Distributed-DataParallel-with-Distributed-RPC-Framework.png
:link: advanced/rpc_ddp_tutorial.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Training Transformer models using Pipeline Parallelism
:card_description: Walk through a through a simple example of how to train a transformer model using pipeline parallelism.
:image: _static/img/thumbnails/cropped/Training-Transformer-models-using-Pipeline-Parallelism.png
:link: intermediate/pipeline_tutorial.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Training Transformer models using Distributed Data Parallel and Pipeline Parallelism
:card_description: Walk through a through a simple example of how to train a transformer model using Distributed Data Parallel and Pipeline Parallelism
:image: _static/img/thumbnails/cropped/Training-Transformer-Models-using-Distributed-Data-Parallel-and-Pipeline-Parallelism.png
:link: advanced/ddp_pipeline.html
:tags: Parallel-and-Distributed-Training
.. customcarditem::
:header: Image Segmentation DeepLabV3 on iOS
:card_description: A comprehensive step-by-step tutorial on how to prepare and run the PyTorch DeepLabV3 image segmentation model on iOS.
:image: _static/img/thumbnails/cropped/ios.png
:link: beginner/deeplabv3_on_ios.html
:tags: Mobile
.. customcarditem::
:header: Image Segmentation DeepLabV3 on Android
:card_description: A comprehensive step-by-step tutorial on how to prepare and run the PyTorch DeepLabV3 image segmentation model on Android.
:image: _static/img/thumbnails/cropped/android.png
:link: beginner/deeplabv3_on_android.html
:tags: Mobile