title | category | layout | tags | updated | intro | |
---|---|---|---|---|---|---|
Stan Functions |
Stan-lang |
2017/sheet |
|
2021-11-22 |
Want to know more about Stan functions? Go to [Stan Functions Reference](https://mc-stan.org/docs/2_28/functions-reference/index.html).
|
{: .-two-column}
{: .-intro}
- Basic Functions (Stan User Guide: User Defined Functions)
- Helpful Functions Repository (Lots of Examples)
{: .-prime}
{: .-file}
functions {
real add(real x, real y) {
return x + y;
}
data {
real x;
}
parameters {
real y;
}
transformed parameters {
real z = add(x, y);
}
model {
y ~ std_normal();
}
}
{: .-three-column}
Typical variable types. No constraint types like simplex[]
, cholesky_factor_corr[]
, etc.!
real foo(real x);
vector foo(real x);
matrix foo(real x);
array[] real foo(real x);
array[ , ] real foo(real x);
array[ , , ] real foo(real x);
...
These do not return any value.
void print_hello(real x) {
print("hello");
}
void increment_lp(real x){
target += 1;
}
Keywords _lpdf
, _lpmf
, _lcdf
functions {
real my_normal_lpdf(real y, real mu, real sigma) {
return normal_lpdf(y | mu, sigma);
}
real my_normal_lcdf(real y, real mu, real sigma) {
return normal_lcdf(y | mu, sigma);
}
}
// ...
model {
alpha ~ my_normal(mu, sigma);
// or target += my_normal_lpdf(alpha | mu, sigma);
target += my_normal_lcdf(x | mu, sigma);
}
Keyword _lp
. These can access the log probability accumulator in the transformed parameters or model blocks.
functions {
vector center_lp(vector beta_raw, real mu, real sigma) {
beta_raw ~ std_normal();
sigma ~ cauchy(0, 5);
mu ~ cauchy(0, 2.5);
return sigma * beta_raw + mu;
}
// ...
}
parameters {
vector[K] beta_raw;
real mu_beta;
real<lower=0> sigma_beta;
// ...
}
transformed parameters {
vector[K] beta;
// ...
beta = center_lp(beta_raw, mu_beta, sigma_beta);
// ...
}
Keywork _rng
. Works in transformed data and generated quantities blocks.
real normal_lub_rng(real mu, real sigma, real lb, real ub) {
real p_lb = normal_cdf(lb, mu, sigma);
real p_ub = normal_cdf(ub, mu, sigma);
real u = uniform_rng(p_lb, p_ub);
real y = mu + sigma * inv_Phi(u);
return y;
}
matrix matrix_pow(matrix a, int n);
matrix matrix_pow(matrix a, int n) {
if (n == 0) {
return diag_matrix(rep_vector(1, rows(a)));
} else {
return a * matrix_pow(a, n - 1);
}
}
Although not a type, these require double declaration. Once with the signature and again with the function definition. See Recursive Functions.
{: .-two-column}
Detect bad or illegal outcomes.
real positive_number(real x) {
if (x < 0) {
reject("positive_number(x): x must be positive; found x = ", x);
}
return x;
}
Need to see what's happening in the function? Use print statements.
real sqrt_problem (real x) {
real y = sqrt(x);
// you forgot to check for negatives
// so you're debugging with print
// to see what's happening
print("sqrt_problem: x is ", x, " return is ", y);
return y;
}