-
Notifications
You must be signed in to change notification settings - Fork 127
/
TravellingSalesmanProblem.cpp
64 lines (53 loc) · 1.81 KB
/
TravellingSalesmanProblem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include <iostream>
using namespace std;
// there are four nodes in example graph (graph is 1-based)
const int n = 4;
// give appropriate maximum to avoid overflow
const int MAX = 1000000;
// dist[i][j] represents shortest distance to go from i to j
// this matrix can be calculated for any given graph using
// all-pair shortest path algorithms
int dist[n + 1][n + 1] = {
{0, 0, 0, 0, 0},
{0, 0, 10, 15, 20},
{0, 10, 0, 25, 25},
{0, 15, 25, 0, 30},
{0, 20, 25, 30, 0},
};
// memoization for top down recursion
int memo[n + 1][1 << (n + 1)];
int fun(int i, int mask)
{
// base case
// if only ith bit and 1st bit is set in our mask,
// it implies we have visited all other nodes already
if (mask == ((1 << i) | 3))
return dist[1][i];
// memoization
if (memo[i][mask] != 0)
return memo[i][mask];
int res = MAX; // result of this sub-problem
// we have to travel all nodes j in mask and end the
// path at ith node so for every node j in mask,
// recursively calculate cost of travelling all nodes in
// mask except i and then travel back from node j to
// node i taking the shortest path take the minimum of
// all possible j nodes
for (int j = 1; j <= n; j++)
if ((mask & (1 << j)) && j != i && j != 1)
res = std::min(res, fun(j, mask & (~(1 << i))) + dist[j][i]);
return memo[i][mask] = res;
}
// Driver program to test above logic
int main()
{
int ans = MAX;
for (int i = 1; i <= n; i++)
// try to go from node 1 visiting all nodes in
// between to i then return from i taking the
// shortest route to 1
ans = std::min(ans, fun(i, (1 << (n + 1)) - 1) + dist[i][1]);
printf("The cost of most efficient tour = %d", ans);
return 0;
}
// This code is contributed by Serjeel Ranjan