-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlambda_lounge_untyped.hs
50 lines (37 loc) · 1.51 KB
/
lambda_lounge_untyped.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
{-# LANGUAGE GADTs #-}
data Exp where
Fun :: Var -> Exp -> Exp
App :: Exp -> Exp -> Exp
Constant :: Value -> Exp
Plus :: Exp -> Exp -> Exp
Times :: Exp -> Exp -> Exp
Variable :: Int -> Exp
data Value = VInt Int | VBool Bool | VFunction (Value -> Value)
instance Show Value where
show (VInt x) = show x
show (VBool x) = show x
show _ = "<Function>"
data Var = Var Int
deriving (Eq, Show)
-- just as a comment, eval is a functor!
eval :: Exp -> Value
eval (Constant x) = x
eval (Plus x y) = case (eval x, eval y) of
(VInt x, VInt y) -> VInt (x+y)
_ -> error "Not integers, you dumbass!"
eval (Times x y) = case (eval x, eval y) of
(VInt x, VInt y) -> VInt (x*y)
_ -> error "Not integers, you dumbass!"
eval (App first second) = case (eval first) of
(VFunction f) -> f (eval second)
_ -> error "What the flip"
eval (Fun v f) = VFunction (\x -> eval(subst f v x))
subst :: Exp -> Var -> Value -> Exp
subst c@(Constant _) _ _ = c
subst (Variable v) (Var v') x = if (v==v') then (Constant x) else (Variable v)
subst (Plus m n) v x = Plus (subst m v x) (subst n v x)
subst (Times m n) v x = Times (subst m v x) (subst n v x)
subst (App m n) v x = App (subst m v x) (subst n v x)
subst (Fun v' b) v x = if (v==v') then (Fun v' b) else (Fun v' (subst b v x))
plusone = Fun (Var 1) (Plus (Variable 1) (Constant (VInt 1)))
y=Fun (Var 1 ) (App ((Fun (Var 2 ) (App (Variable 1 ) (App (Variable 2 ) (Variable 2 ))))) (Fun (Var 3 ) (App (Variable 1 ) (App (Variable 3 ) (Variable 3 )))))