Skip to content

Latest commit

 

History

History
102 lines (89 loc) · 2.7 KB

README.md

File metadata and controls

102 lines (89 loc) · 2.7 KB

CMU_ComputerVision

This is a summary of the task.

HW1

Image Filtering and Hough Transform

  • Hough Transform Line Parametrization
  • Convolution
  • Edge detection
  • The Hough transform
  • Finding lines
  • Fitting line segments for visualization
  • Use MATLAB

HW2

Scene recognition with bag of words

Part1. Build Visual Words Dictionary
  • Extract Filter Responses
  • Collect sample of points from image
  • Compute Dictionary of Visual Words
Part2. Build Visual Scne Recognition System
  • Convert image to word map
  • Get Image Features
  • Build Recognition System - Nearest Neighbors
Part3. Evaluate Visual Scne Recognition System
  • Image Feature Distance

  • Evaluate Recognition System - NN and kNN

  • Using Python, OpenCV


HW3

Neural Networks for Recognition

  • Network Initialization
  • Forward Propagation
  • Backwards Propagation
  • Training Loop
  • Numerical Gradient Checker
  • Training Models

HW4

Augmented Reality with Planar Homographies

1. Homographies
  • Planar Homographies as a Warp
    • Homography
  • The Direct Linear Transform
    • Correspondences
  • Using Matrix Decompositions to calculate the homography
  • Eigenvalue Decomposition
  • Singular Value Decomposition
  • Theory
    • Homography under rotation
    • Understanding homographies under rotation
    • Limitations of the planar homography
    • Behavior of lines under perspective projections
2. Computing Planar Homographies
  • Feature Detection and Matching
    • FAST Detector
    • BRIEF Descriptor
    • Matching Methods
    • Feature Matching
    • BRIEF and Rotations
  • Homography Computation
    • Computing the Homography
  • Homography Normalization
    • Homography with normalization
  • RANSAC
    • Implement RANSAC for computing a homography
  • Automated Homography Estimation and Warping
    • Puttin it together
3. Creating your Augmented Reality application
  • Incorporating video

HW5

3D Reconstruction

1. Sparse Reconstruction
  • Implement the eight point algorithm
  • Find epipolar correspondences
  • Write a function to compute the essential matrix
  • Implement triangulation
  • Write a test script that uses data/temple_coords.npz
2. Dense Reconsturction
  • Image Rectification
  • Dense window matching to find per pixel disparity
  • Depth map

HW6

Video Tracking

1. Lucas-Kanade Tracker
  • Lucas-Kanade Forward Addictive Alignment with Translation
  • Lucas-Kanade Forward Addictive Alignment with Affine Transformation
  • Inverse Compositional Alignment with Affine Transformation
  • Test Algorithm