-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathPlatoon_TPLF.m
364 lines (298 loc) · 19.3 KB
/
Platoon_TPLF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
%% Code for the paper
% Title: Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies
% Authors: Zheng, Yang, Shengbo Eben Li, Keqiang Li, Francesco Borrelli, and J. Karl Hedrick.
% Journal: IEEE Transactions on Control Systems Technology 25, no. 3 (2017): 899-910.
%% DMPC for platoons with TPLF topology
clc;clear;close all;
load PlatoonParameter.mat % This set of parameters were used in the paper
%% Varable
Postion = zeros(Num_step,Num_veh); % postion of each vehicle;
Velocity = zeros(Num_step,Num_veh); % velocity of each vehicle;
Torque = zeros(Num_step,Num_veh); % Braking or Tracking Torque of each vehicle;
U = zeros(Num_step,Num_veh); % Desired Braking or Tracking Torque of each vehicle;
Cost = zeros(Num_step,Num_veh); % 代价函数
Exitflg = zeros(Num_step,Num_veh); % 推出机制
%% Leading vehicle
d = 20; % 期望的跟车误差
a0 = zeros(Num_step,1); v0 = zeros(Num_step,1); x0 = zeros(Num_step,1);
v0(1) = 20; a0(1/Tim_step+1:2/Tim_step) = 2;
% leader 状态更新
for i = 2:Num_step
v0(i) = v0(i-1)+a0(i)*Tim_step;
x0(i) = x0(i-1)+v0(i)*Tim_step;
end
% 初始分布 无误差
for i = 1:Num_veh
Postion(1,i) = x0(1)-i*d;
Velocity(1,i) = 20; % 具有初始速度误差;
Torque(1,i) = (Mass(i)*g*f + Ca(i)*Velocity(1,i)^2)*R(i)/Eta;
end
%% Iterative Simulation
% PF topology --> Fi > Gi+1
% Q1 : leader weighted matrix for state;
% R1 --> leader weighted matrix for control input
% Fi --> 自身偏离的惩罚
% Gi --> 偏离邻域车辆状态的惩罚
% MPC weighted matrix initial
F1 = 10*eye(2); G1 = 0; Q1 = 10*eye(2);R1 = 1;
F2 = 10*eye(2); G2 = 10/2*eye(2);Q2 = 10*eye(2); R2 = 1;
F3 = 10*eye(2); G3 = 10/2*eye(2);Q3 = 10*eye(2); R3 = 1;
F4 = 10*eye(2); G4 = 10/2*eye(2);Q4 = 10*eye(2); R4 = 1;
F5 = 10*eye(2); G5 = 10/2*eye(2);Q5 = 10*eye(2); R5 = 1;
F6 = 10*eye(2); G6 = 10/2*eye(2);Q6 = 10*eye(2); R6 = 1;
F7 = 10*eye(2); G7 = 10/2*eye(2);Q7 = 10*eye(2); R7 = 1;
% Distributed MPC assumed state
Np = 20; % 预测步长
Pa = zeros(Np,Num_veh); % Assumed postion of each vehicle;
Va = zeros(Np,Num_veh); % Assumed velocity of each vehicle;
ua = zeros(Np,Num_veh); % Assumed Braking or Tracking Torque input of each vehicle;
Pa_next = zeros(Np+1,Num_veh); % 1(0):为上一时刻的状态Assumed postion of each vehicle at the newt time step;
Va_next = zeros(Np+1,Num_veh); % Assumed velocity of each vehicle at the newt time step;
ua_next = zeros(Np+1,Num_veh); % Assumed Braking or Tracking Torque of each vehicle at the newt time step;
% Initialzie the assumed state for the first computation: constant speed
for i = 1:Num_veh
ua(:,i) = Torque(1,i);
Pa(1,i) = Postion(1,i); % 假设的第一个点 为文章中的 k=0处,为当前车辆的状态;
Va(1,i) = Velocity(1,i);
Ta(1,i) = Torque(1,i);
for j = 1:Np
[Pa(j+1,i),Va(j+1,i),Ta(j+1,i)] = VehicleDynamic(ua(j,i),Tim_step,Pa(j,i),Va(j,i),Ta(j,i),Mass(i),R(i),g,f,Eta,Ca(i),Tao(i));
end
end
tol_opt = 1e-5;
options = optimset('Display','off','TolFun', tol_opt, 'MaxIter', 2000,...
'LargeScale', 'off', 'RelLineSrchBnd', [], 'RelLineSrchBndDuration', 1);
%% 调试用
% 终端状态
Xend = zeros(Num_step,Num_veh); Vend = zeros(Num_step,Num_veh);
%% 循环仿真
for i = 2:Num_step - Np
fprintf('\n Steps i= %d\n',i)
% Solve optimization problem
tic
%% Vehicle one
Vehicle_Type = [Mass(1),R(1),g,f,Eta,Ca(1),Tao(1)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,1),Velocity(i-1,1),Torque(i-1,1)]; % the vehicle variable in the last time
Pd = x0(i-1:i+Np-1) - d; Vd = v0(i-1:i+Np-1); % 共Np+1个点,注意下角标,i-1 代表上一时刻的状态, i代表当前需要优化求解的状态
Xdes = [Pd,Vd]; % Udes = Td; % 第一辆车的期望行为
Xa = [Pa(:,1),Va(:,1)]; % 自己预期的行为,传递给下一辆车
Xnba = zeros(Np+1,2); % 1:为上一时刻的状态
u0 = ua(:,1); % 起始搜索点
A = [];b = []; Aeq = []; beq = []; % 没有线性约束
lb = Torquebound(1,1)*ones(Np,1); ub = Torquebound(1,2)*ones(Np,1); % 控制量上下界
Pnp = Pd(end,1); Vnp = Vd(end,1); % 终端约束
Xend(i,1) = Pnp; Vend(i,1) = Vnp; Tnp = (Ca(1)*Vnp.^2 + Mass(1)*g*f)/Eta*R(1);
% MPC 优化求解
[u, Cost(i,1), Exitflg(i,1), output] = fmincon(@(u) Costfunction2( Np, Tim_step, X0 ,u, Vehicle_Type,Q1,Xdes,R1,F1,Xa,G1,Xnba), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% 车辆往前走一步
U(i,1) = u(1);
[Postion(i,1),Velocity(i,1),Torque(i,1)] = VehicleDynamic(U(i,1),Tim_step,Postion(i-1,1),Velocity(i-1,1),Torque(i-1,1),Mass(1),R(1),g,f,Eta,Ca(1),Tao(1));
% 这个地方需要注意,下一阶段的assumed state, 在t+1时刻预测Np自身的状态
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,1),Velocity(i,1),Torque(i,1)];
ua(1:Np-1,1) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,1),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(1),R(1),g,f,Eta,Ca(1),Tao(1));
end
ua(Np,1) = (Ca(1)*Temp(Np,2).^2 + Mass(1)*g*f)/Eta*R(1);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,1),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(1),R(1),g,f,Eta,Ca(1),Tao(1));
Pa_next(:,1) = Temp(:,1);
Va_next(:,1) = Temp(:,2);
toc
%% Vehicle two
tic
Vehicle_Type = [Mass(2),R(2),g,f,Eta,Ca(2),Tao(2)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,2),Velocity(i-1,2),Torque(i-1,2)]; % the vehicle variable in the last time
Pd = x0(i-1:i+Np-1) - 2*d; Vd = v0(i-1:i+Np-1); % 共Np+1个点,注意下角标,i-1 代表上一时刻的状态, i代表当前需要优化求解的状态
Xdes = [Pd,Vd]; % Udes = Td; % 第一辆车的期望行为
Xa = [Pa(:,2),Va(:,2)]; % 自己预期的行为,传递给下一辆车
Xnfa = [Pa(:,1) - d, Va(:,1)]; % 1:为上一时刻的状态
u0 = ua(:,2); % 起始搜索点
A = [];b = []; Aeq = []; beq = []; % 没有线性约束
lb = Torquebound(2,1)*ones(Np,1); ub = Torquebound(2,2)*ones(Np,1); % 控制量上下界
Pnp = (Xnfa(end,1)+Pd(end))/2; Vnp = (Xnfa(end,2)+Vd(end))/2; % 终端约束
Xend(i,2) = Pnp; Vend(i,2) = Vnp; Tnp = (Ca(2)*Vnp.^2 + Mass(2)*g*f)/Eta*R(2);
% MPC 优化求解
[u, Cost(i,2), Exitflg(i,2), output] = fmincon(@(u) Costfunction2( Np, Tim_step, X0 ,u, Vehicle_Type,Q2,Xdes,R2,F2,Xa,G2,Xnfa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% 车辆往前走一步
U(i,2) = u(1);
[Postion(i,2),Velocity(i,2),Torque(i,2)] = VehicleDynamic(U(i,2),Tim_step,Postion(i-1,2),Velocity(i-1,2),Torque(i-1,2),Mass(2),R(2),g,f,Eta,Ca(2),Tao(2));
% 这个地方需要注意,下一阶段的assumed state, 在t+1时刻预测Np自身的状态
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,2),Velocity(i,2),Torque(i,2)];
ua(1:Np-1,2) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,2),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(2),R(2),g,f,Eta,Ca(2),Tao(2));
end
ua(Np,2) = (Ca(2)*Temp(Np,2).^2 + Mass(2)*g*f)/Eta*R(2);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,2),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(2),R(2),g,f,Eta,Ca(2),Tao(2));
Pa_next(:,2) = Temp(:,1);
Va_next(:,2) = Temp(:,2);
toc
%% vehicle three
tic
Vehicle_Type = [Mass(3),R(3),g,f,Eta,Ca(3),Tao(3)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,3),Velocity(i-1,3),Torque(i-1,3)]; % the vehicle variable in the last time
Pd = x0(i-1:i+Np-1) - 3*d; Vd = v0(i-1:i+Np-1); % 共Np+1个点,注意下角标,i-1 代表上一时刻的状态, i代表当前需要优化求解的状态
Xdes = [Pd,Vd]; % Udes = Td; % 第一辆车的期望行为
Xa = [Pa(:,3),Va(:,3)]; % 自己预期的行为,传递给下一辆车
Xnfa = [Pa(:,2) - d, Va(:,2)]; % 1:为上一时刻的状态
Xnffa = [Pa(:,1) - 2*d, Va(:,1)];
u0 = ua(:,3); % 起始搜索点
A = [];b = []; Aeq = []; beq = []; % 没有线性约束
lb = Torquebound(3,1)*ones(Np,1); ub = Torquebound(3,2)*ones(Np,1); % 控制量上下界
Pnp = (Xnfa(end,1)+Xnffa(end,1)+Pd(end))/3; Vnp = (Xnfa(end,2)+Xnffa(end,2)+Vd(end))/3; % 终端约束
Xend(i,3) = Pnp; Vend(i,3) = Vnp; Tnp = (Ca(3)*Vnp.^2 + Mass(3)*g*f)/Eta*R(3);
% MPC 优化求解
[u, Cost(i,3), Exitflg(i,3), output] = fmincon(@(u) Costfunction1( Np, Tim_step, X0 ,u, Vehicle_Type,Q3,Xdes,R3,F3,Xa,G3,Xnfa,Xnffa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% 车辆往前走一步
U(i,3) = u(1);
[Postion(i,3),Velocity(i,3),Torque(i,3)] = VehicleDynamic(U(i,3),Tim_step,Postion(i-1,3),Velocity(i-1,3),Torque(i-1,3),Mass(3),R(3),g,f,Eta,Ca(3),Tao(3));
% 这个地方需要注意,下一阶段的assumed state, 在t+1时刻预测Np自身的状态
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,3),Velocity(i,3),Torque(i,3)];
ua(1:Np-1,3) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,3),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(3),R(3),g,f,Eta,Ca(3),Tao(3));
end
ua(Np,3) = (Ca(3)*Temp(Np,2).^2 + Mass(3)*g*f)/Eta*R(3);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,3),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(3),R(3),g,f,Eta,Ca(3),Tao(3));
Pa_next(:,3) = Temp(:,1);
Va_next(:,3) = Temp(:,2);
toc
%% vehicle four
tic
Vehicle_Type = [Mass(4),R(4),g,f,Eta,Ca(4),Tao(4)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,4),Velocity(i-1,4),Torque(i-1,4)]; % the vehicle variable in the last time
Pd = x0(i-1:i+Np-1) - 4*d; Vd = v0(i-1:i+Np-1); % 共Np+1个点,注意下角标,i-1 代表上一时刻的状态, i代表当前需要优化求解的状态
Xdes = [Pd,Vd]; % Udes = Td; % 第一辆车的期望行为
Xa = [Pa(:,4),Va(:,4)]; % 自己预期的行为,传递给下一辆车
Xnfa = [Pa(:,3) - d, Va(:,3)]; % 1:为上一时刻的状态
Xnffa = [Pa(:,2) - 2*d, Va(:,2)];
u0 = ua(:,4); % 起始搜索点
A = [];b = []; Aeq = []; beq = []; % 没有线性约束
lb = Torquebound(4,1)*ones(Np,1); ub = Torquebound(4,2)*ones(Np,1); % 控制量上下界
Pnp = (Xnfa(end,1)+Xnffa(end,1)+Pd(end))/3; Vnp = (Xnfa(end,2)+Xnffa(end,2)+Vd(end))/3; % 终端约束
Xend(i,4) = Pnp; Vend(i,4) = Vnp; Tnp = (Ca(4)*Vnp.^2 + Mass(4)*g*f)/Eta*R(4);
% MPC 优化求解
[u, Cost(i,4), Exitflg(i,4), output] = fmincon(@(u) Costfunction1( Np, Tim_step, X0 ,u, Vehicle_Type,Q3,Xdes,R3,F3,Xa,G3,Xnfa,Xnffa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% 车辆往前走一步
U(i,4) = u(1);
[Postion(i,4),Velocity(i,4),Torque(i,4)] = VehicleDynamic(U(i,4),Tim_step,Postion(i-1,4),Velocity(i-1,4),Torque(i-1,4),Mass(4),R(4),g,f,Eta,Ca(4),Tao(4));
% 这个地方需要注意,下一阶段的assumed state, 在t+1时刻预测Np自身的状态
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,4),Velocity(i,4),Torque(i,4)];
ua(1:Np-1,4) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,4),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(4),R(4),g,f,Eta,Ca(4),Tao(4));
end
ua(Np,4) = (Ca(4)*Temp(Np,2).^2 + Mass(4)*g*f)/Eta*R(4);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,4),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(4),R(4),g,f,Eta,Ca(4),Tao(4));
Pa_next(:,4) = Temp(:,1);
Va_next(:,4) = Temp(:,2);
toc
%% vehicle five
tic
Vehicle_Type = [Mass(5),R(5),g,f,Eta,Ca(5),Tao(5)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,5),Velocity(i-1,5),Torque(i-1,5)]; % the vehicle variable in the last time
Pd = x0(i-1:i+Np-1) - 5*d; Vd = v0(i-1:i+Np-1); % 共Np+1个点,注意下角标,i-1 代表上一时刻的状态, i代表当前需要优化求解的状态
Xdes = [Pd,Vd]; % Udes = Td; % 第一辆车的期望行为
Xa = [Pa(:,5),Va(:,5)]; % 自己预期的行为,传递给下一辆车
Xnfa = [Pa(:,4) - d, Va(:,4)]; % 1:为上一时刻的状态
Xnffa = [Pa(:,3) - 2*d, Va(:,3)];
u0 = ua(:,5); % 起始搜索点
A = [];b = []; Aeq = []; beq = []; % 没有线性约束
lb = Torquebound(5,1)*ones(Np,1); ub = Torquebound(5,2)*ones(Np,1); % 控制量上下界
Pnp = (Xnfa(end,1)+Xnffa(end,1)+Pd(end))/3; Vnp = (Xnfa(end,2)+Xnffa(end,2)+Vd(end))/3; % 终端约束
Xend(i,5) = Pnp; Vend(i,5) = Vnp; Tnp = (Ca(5)*Vnp.^2 + Mass(5)*g*f)/Eta*R(5);
% MPC 优化求解
[u, Cost(i,5), Exitflg(i,5), output] = fmincon(@(u) Costfunction1( Np, Tim_step, X0 ,u, Vehicle_Type,Q3,Xdes,R3,F3,Xa,G3,Xnfa,Xnffa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% 车辆往前走一步
U(i,5) = u(1);
[Postion(i,5),Velocity(i,5),Torque(i,5)] = VehicleDynamic(U(i,5),Tim_step,Postion(i-1,5),Velocity(i-1,5),Torque(i-1,5),Mass(5),R(5),g,f,Eta,Ca(5),Tao(5));
% 这个地方需要注意,下一阶段的assumed state, 在t+1时刻预测Np自身的状态
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,5),Velocity(i,5),Torque(i,5)];
ua(1:Np-1,5) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,5),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(5),R(5),g,f,Eta,Ca(5),Tao(5));
end
ua(Np,5) = (Ca(5)*Temp(Np,2).^2 + Mass(5)*g*f)/Eta*R(5);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,5),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(5),R(5),g,f,Eta,Ca(5),Tao(5));
Pa_next(:,5) = Temp(:,1);
Va_next(:,5) = Temp(:,2);
toc
%% vehicle six
tic
Vehicle_Type = [Mass(6),R(6),g,f,Eta,Ca(6),Tao(6)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,6),Velocity(i-1,6),Torque(i-1,6)]; % the vehicle variable in the last time
Pd = x0(i-1:i+Np-1) - 6*d; Vd = v0(i-1:i+Np-1); % 共Np+1个点,注意下角标,i-1 代表上一时刻的状态, i代表当前需要优化求解的状态
Xdes = [Pd,Vd]; % Udes = Td; % 第一辆车的期望行为
Xa = [Pa(:,6),Va(:,6)]; % 自己预期的行为,传递给下一辆车
Xnfa = [Pa(:,5) - d, Va(:,5)]; % 1:为上一时刻的状态
Xnffa = [Pa(:,4) - 2*d, Va(:,4)];
u0 = ua(:,6); % 起始搜索点
A = [];b = []; Aeq = []; beq = []; % 没有线性约束
lb = Torquebound(6,1)*ones(Np,1); ub = Torquebound(6,2)*ones(Np,1); % 控制量上下界
Pnp = (Xnfa(end,1)+Xnffa(end,1)+Pd(end))/3; Vnp = (Xnfa(end,2)+Xnffa(end,2)+Vd(end))/3; % 终端约束
Xend(i,6) = Pnp; Vend(i,6) = Vnp; Tnp = (Ca(6)*Vnp.^2 + Mass(6)*g*f)/Eta*R(6);
% MPC 优化求解
[u, Cost(i,6), Exitflg(i,6), output] = fmincon(@(u) Costfunction1( Np, Tim_step, X0 ,u, Vehicle_Type,Q3,Xdes,R3,F3,Xa,G3,Xnfa,Xnffa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% 车辆往前走一步
U(i,6) = u(1);
[Postion(i,6),Velocity(i,6),Torque(i,6)] = VehicleDynamic(U(i,6),Tim_step,Postion(i-1,6),Velocity(i-1,6),Torque(i-1,6),Mass(6),R(6),g,f,Eta,Ca(6),Tao(6));
% 这个地方需要注意,下一阶段的assumed state, 在t+1时刻预测Np自身的状态
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,6),Velocity(i,6),Torque(i,6)];
ua(1:Np-1,6) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,6),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(6),R(6),g,f,Eta,Ca(6),Tao(6));
end
ua(Np,6) = (Ca(6)*Temp(Np,2).^2 + Mass(6)*g*f)/Eta*R(6);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,6),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(6),R(6),g,f,Eta,Ca(6),Tao(6));
Pa_next(:,6) = Temp(:,1);
Va_next(:,6) = Temp(:,2);
toc
%% vehicle seven
tic
Vehicle_Type = [Mass(7),R(7),g,f,Eta,Ca(7),Tao(7)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,7),Velocity(i-1,7),Torque(i-1,7)]; % the vehicle variable in the last time
Pd = x0(i-1:i+Np-1) - 7*d; Vd = v0(i-1:i+Np-1); % 共Np+1个点,注意下角标,i-1 代表上一时刻的状态, i代表当前需要优化求解的状态
Xdes = [Pd,Vd]; % Udes = Td; % 第一辆车的期望行为
Xa = [Pa(:,7),Va(:,7)]; % 自己预期的行为,传递给下一辆车
Xnfa = [Pa(:,6) - d, Va(:,6)]; % 1:为上一时刻的状态
Xnffa = [Pa(:,5) - 2*d, Va(:,5)];
u0 = ua(:,7); % 起始搜索点
A = [];b = []; Aeq = []; beq = []; % 没有线性约束
lb = Torquebound(7,1)*ones(Np,1); ub = Torquebound(7,2)*ones(Np,1); % 控制量上下界
Pnp = (Xnfa(end,1)+Xnffa(end,1)+Pd(end))/3; Vnp = (Xnfa(end,2)+Xnffa(end,2)+Vd(end))/3; % 终端约束
Xend(i,7) = Pnp; Vend(i,7) = Vnp; Tnp = (Ca(7)*Vnp.^2 + Mass(7)*g*f)/Eta*R(7);
% MPC 优化求解
[u, Cost(i,7), Exitflg(i,7), output] = fmincon(@(u) Costfunction1( Np, Tim_step, X0 ,u, Vehicle_Type,Q3,Xdes,R3,F3,Xa,G3,Xnfa,Xnffa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% 车辆往前走一步
U(i,7) = u(1);
[Postion(i,7),Velocity(i,7),Torque(i,7)] = VehicleDynamic(U(i,7),Tim_step,Postion(i-1,7),Velocity(i-1,7),Torque(i-1,7),Mass(7),R(7),g,f,Eta,Ca(7),Tao(7));
% 这个地方需要注意,下一阶段的assumed state, 在t+1时刻预测Np自身的状态
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,7),Velocity(i,7),Torque(i,7)];
ua(1:Np-1,7) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,7),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(7),R(7),g,f,Eta,Ca(7),Tao(7));
end
ua(Np,7) = (Ca(7)*Temp(Np,2).^2 + Mass(7)*g*f)/Eta*R(7);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,7),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(7),R(7),g,f,Eta,Ca(7),Tao(7));
Pa_next(:,7) = Temp(:,1);
Va_next(:,7) = Temp(:,2);
toc
%% 跟新交换数据矩阵
Pa = Pa_next;
Va = Va_next;
end
FigurePlot