forked from triton-inference-server/server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
grpc_client.py
115 lines (96 loc) · 4.36 KB
/
grpc_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import grpc
from tritonclient.grpc import service_pb2
from tritonclient.grpc import service_pb2_grpc
FLAGS = None
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
action="store_true",
required=False,
default=False,
help='Enable verbose output')
parser.add_argument('-u',
'--url',
type=str,
required=False,
default='localhost:8001',
help='Inference server URL. Default is localhost:8001.')
FLAGS = parser.parse_args()
model_name = "inception_graphdef"
model_version = ""
batch_size = 1
# Create gRPC stub for communicating with the server
channel = grpc.insecure_channel(FLAGS.url)
grpc_stub = service_pb2_grpc.GRPCInferenceServiceStub(channel)
# Health
try:
request = service_pb2.ServerLiveRequest()
response = grpc_stub.ServerLive(request)
print("server {}".format(response))
except Exception as ex:
print(ex)
request = service_pb2.ServerReadyRequest()
response = grpc_stub.ServerReady(request)
print("server {}".format(response))
request = service_pb2.ModelReadyRequest(name=model_name,
version=model_version)
response = grpc_stub.ModelReady(request)
print("model {}".format(response))
# Metadata
request = service_pb2.ServerMetadataRequest()
response = grpc_stub.ServerMetadata(request)
print("server metadata:\n{}".format(response))
request = service_pb2.ModelMetadataRequest(name=model_name,
version=model_version)
response = grpc_stub.ModelMetadata(request)
print("model metadata:\n{}".format(response))
# Configuration
request = service_pb2.ModelConfigRequest(name=model_name,
version=model_version)
response = grpc_stub.ModelConfig(request)
print("model config:\n{}".format(response))
# Infer
request = service_pb2.ModelInferRequest()
request.model_name = model_name
request.model_version = model_version
request.id = "my request id"
input = service_pb2.ModelInferRequest().InferInputTensor()
input.name = "input"
input.datatype = "FP32"
input.shape.extend([1, 299, 299, 3])
request.inputs.extend([input])
output = service_pb2.ModelInferRequest().InferRequestedOutputTensor()
output.name = "InceptionV3/Predictions/Softmax"
request.outputs.extend([output])
request.raw_input_contents.extend([bytes(1072812 * 'a', 'utf-8')])
response = grpc_stub.ModelInfer(request)
print("model infer:\n{}".format(response))
print("PASS")