-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtbgrl_cora.yaml
86 lines (86 loc) · 1.6 KB
/
tbgrl_cora.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#
# Sample Weights & Biases YAML file for a hyperparameter sweep over all of TBGRL's parameters.
#
method: bayes
metric:
goal: maximize
name: val_mean_hits@50
parameters:
base_model:
distribution: constant
value: triplet
dataset:
distribution: constant
value: cora
do_classification_eval:
distribution: constant
value: "false"
drop_edge_p_1:
distribution: q_uniform
max: 0.9
min: 0.1
q: 0.1
drop_edge_p_2:
distribution: q_uniform
max: 0.9
min: 0.1
q: 0.1
drop_feat_p_1:
distribution: q_uniform
max: 0.9
min: 0.1
q: 0.1
drop_feat_p_2:
distribution: q_uniform
max: 0.9
min: 0.1
q: 0.1
epochs:
distribution: constant
value: 10000
graph_transforms:
distribution: constant
value: standard
intermediate_eval:
distribution: constant
value: "false"
link_mlp_hidden_size:
distribution: constant
value: 256
link_nn_epochs:
distribution: constant
value: 5000
lr:
distribution: q_uniform
max: 0.1
min: 0.001
q: 0.001
mm:
distribution: q_uniform
max: 1
min: 0.9
q: 0.01
neg_lambda:
distribution: q_uniform
max: 0.95
min: 0.05
q: 0.01
negative_transforms:
distribution: categorical
values:
- scramble-edge-combo
- rand-rand-combo
- rand-rand-rand-combo
num_runs:
distribution: constant
value: 5
training_early_stop:
distribution: categorical
values:
- "true"
- "false"
training_early_stop_patience:
distribution: int_uniform
max: 100
min: 5
program: train_inductive.py