-
Notifications
You must be signed in to change notification settings - Fork 354
/
Copy pathtrain_avd.py
98 lines (80 loc) · 5.23 KB
/
train_avd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""
Copyright Snap Inc. 2021. This sample code is made available by Snap Inc. for informational purposes only.
No license, whether implied or otherwise, is granted in or to such code (including any rights to copy, modify,
publish, distribute and/or commercialize such code), unless you have entered into a separate agreement for such rights.
Such code is provided as-is, without warranty of any kind, express or implied, including any warranties of merchantability,
title, fitness for a particular purpose, non-infringement, or that such code is free of defects, errors or viruses.
In no event will Snap Inc. be liable for any damages or losses of any kind arising from the sample code or your use thereof.
"""
from tqdm import trange
import torch
from torch.utils.data import DataLoader
from logger import Logger
from torch.optim.lr_scheduler import MultiStepLR
from frames_dataset import DatasetRepeater
def random_scale(region_params, scale):
theta = torch.rand(region_params['shift'].shape[0], 2) * (2 * scale) + (1 - scale)
theta = torch.diag_embed(theta).unsqueeze(1).type(region_params['shift'].type())
new_region_params = {'shift': torch.matmul(theta, region_params['shift'].unsqueeze(-1)).squeeze(-1),
'affine': torch.matmul(theta, region_params['affine'])}
return new_region_params
def train_avd(config, generator, region_predictor, bg_predictor,
avd_network, checkpoint, log_dir, dataset):
train_params = config['train_avd_params']
optimizer = torch.optim.Adam(avd_network.parameters(), lr=train_params['lr'], betas=(0.5, 0.999))
if checkpoint is not None:
start_epoch = Logger.load_cpk(checkpoint, generator=generator, region_predictor=region_predictor,
bg_predictor=bg_predictor, avd_network=avd_network,
optimizer_avd=optimizer)
else:
raise AttributeError("Checkpoint should be specified for mode='train_avd'.")
scheduler = MultiStepLR(optimizer, train_params['epoch_milestones'], gamma=0.1)
if 'num_repeats' in train_params or train_params['num_repeats'] != 1:
dataset = DatasetRepeater(dataset, train_params['num_repeats'])
dataloader = DataLoader(dataset, batch_size=train_params['batch_size'], shuffle=True,
num_workers=train_params['dataloader_workers'], drop_last=True)
with Logger(log_dir=log_dir, visualizer_params=config['visualizer_params'],
checkpoint_freq=train_params['checkpoint_freq'], train_mode='avd') as logger:
for epoch in trange(start_epoch, train_params['num_epochs']):
avd_network.train()
for x in dataloader:
with torch.no_grad():
regions_params_id = region_predictor(x['source'].cuda())
regions_params_pose_gt = region_predictor(x['driving'].cuda())
regions_params_pose = random_scale(regions_params_pose_gt, scale=train_params['random_scale'])
rec = avd_network(regions_params_id, regions_params_pose)
reconstruction_shift = train_params['lambda_shift'] * \
torch.abs(regions_params_pose_gt['shift'] - rec['shift']).mean()
reconstruction_affine = train_params['lambda_affine'] * \
torch.abs(regions_params_pose_gt['affine'] - rec['affine']).mean()
loss_dict = {'rec_shift': reconstruction_shift, 'rec_affine': reconstruction_affine}
loss = reconstruction_shift + reconstruction_affine
loss.backward()
optimizer.step()
optimizer.zero_grad()
losses = {key: value.mean().detach().data.cpu().numpy() for key, value in loss_dict.items()}
logger.log_iter(losses=losses)
# Visualization
avd_network.eval()
with torch.no_grad():
source = x['source'][:6].cuda()
driving = torch.cat([x['driving'][[0, 1]].cuda(), source[[2, 3, 2, 1]]], dim=0)
source_region_params = region_predictor(source)
driving_region_params = region_predictor(driving)
out = avd_network(source_region_params, driving_region_params)
out['covar'] = torch.matmul(out['affine'], out['affine'].permute(0, 1, 3, 2))
driving_region_params = out
generated = generator(source, source_region_params=source_region_params,
driving_region_params=driving_region_params)
generated['driving_region_params'] = driving_region_params
generated['source_region_params'] = source_region_params
scheduler.step(epoch)
logger.log_epoch(epoch,
{'generator': generator,
'bg_predictor': bg_predictor,
'region_predictor': region_predictor,
'optimizer_reconstruction': optimizer,
'avd_network': avd_network,
'optimizer_avd': optimizer},
inp={'source': source, 'driving': driving},
out=generated)