forked from NeuralMMO/environment
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathForgeEvo.py
224 lines (185 loc) · 7.67 KB
/
ForgeEvo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import json
import pickle
import sys
from pdb import set_trace as TT
# My favorite debugging macro
import re
import ray
import torch
if torch.cuda.is_available():
torch.cuda.init()
from fire import Fire
from ray import rllib
import projekt
from evolution.evolver import init_evolver
from projekt import rllib_wrapper
from evolution.global_actors import Counter, Stats
from projekt.config import get_experiment_name
from pcg import get_tile_data
from evolution.qdpy_wrapper import plot_qdpy_fitness, render_map_grid
from evolution.evo_map import save_maps
TILE_TYPES, TILE_PROBS = get_tile_data(griddly=False)
'''Main file for the neural-mmo/projekt demo
/projeckt will give you a basic sense of the training
loop, infrastructure, and IO modules for handling input
and output spaces. From there, you can either use the
prebuilt IO networks in PyTorch to start training your
own models immediately or hack on the environment'''
# Instantiate a new environment
def createEnv(config):
# map_arr = config['map_arr']
return rllib_wrapper.RLlibEnv(#map_arr,
config)
# Map agentID to policyID -- requires config global
def mapPolicy(agentID):
return 'policy_{}'.format(agentID % config.NPOLICIES)
# Generate RLlib policies
def createPolicies(config):
obs = rllib_wrapper.observationSpace(config)
atns = rllib_wrapper.actionSpace(config)
policies = {}
for i in range(config.NPOLICIES):
params = {"agent_id": i, "obs_space_dict": obs, "act_space_dict": atns}
key = mapPolicy(i)
policies[key] = (None, obs, atns, params)
return policies
def process_config(config, experiment_name):
config.set('EVO_DIR', experiment_name)
# TODO: put this in a dictionary that provides alternative skills for the griddly environment, or maybe just use strings that map to different skillsets for each environment?
if config.SKILLS == 'ALL':
SKILLS = ['constitution','fishing','hunting','range','mage','melee','defense','woodcutting','mining','exploration']
elif config.SKILLS == 'HARVEST':
SKILLS = ['woodcutting','mining']
elif config.SKILLS == 'EXPLORATION':
SKILLS = ['exploration']
elif config.SKILLS == 'COMBAT':
SKILLS = ['mage','range','melee']
elif config.SKILLS == 'NONE':
SKILLS = []
else:
raise Exception
config.set('SKILLS', SKILLS)
return config
def main():
# Setup ray
global config
config = projekt.config.EvoNMMO()
# config = projekt.config.Griddly()
# Built config with CLI overrides
if len(sys.argv) > 1:
sys.argv.insert(1, 'override')
Fire(config)
# Load config from json
if config.load_arguments != -1:
load_args = json.load(
open('configs/settings_{}.json'.format(config.load_arguments), 'r'))
[config.set(k, v) for (k, v) in load_args.items()]
if config.NUM_GPUS > 0:
# torch.cuda.init()
torch.set_num_threads(torch.get_num_threads())
# torch.set_num_threads(1)
experiment_name = get_experiment_name(config)
config.set('ROOT', re.sub('evo_experiment/.*/', 'evo_experiment/{}/'.format(experiment_name), config.ROOT))
#) config.ROOT.replace('evo_experiment/{}'.format(config.EVO_DIR), 'evo_experiment/{}'.format(experiment_name)))
save_path = os.path.join('evo_experiment', '{}'.format(experiment_name))
if not os.path.isdir(save_path):
os.mkdir(save_path)
with open(os.path.join(save_path, 'settings.json'), 'w') as f:
json.dump(config.data, f, indent=4)
config = process_config(config, experiment_name)
if config.VIS_MAPS:
archive_path = os.path.join(save_path, 'ME_archive.p')
if not os.path.isfile(archive_path):
print(f'Skipping non-existent archive: {archive_path}')
return
archive = pickle.load(open(os.path.join(save_path, 'ME_archive.p'), 'rb'))
grid = archive['container']
# print('Rendering grid of sample maps from archive of elites.')
# render_map_grid(grid, save_path)
logbook_path = os.path.join(save_path, 'logbook.pkl')
if not os.path.isfile(logbook_path):
print(f'Skipping non-existent logbook: {logbook_path}')
return
logbook = pickle.load(open(logbook_path, 'rb'))
print('Plotting histogram of map fitness.')
plot_qdpy_fitness(save_path=save_path, logbook=logbook, evolver=None)
# print('Saving and rendering maps from the archive of elites.')
# save_maps(individuals=grid, save_path=save_path, config=config)
return
ray.init()
# RLlib registry
rllib.models.ModelCatalog.register_custom_model('test_model',
rllib_wrapper.RLlibPolicy)
ray.tune.registry.register_env("custom", createEnv)
# on the driver (not using "global_stats" at the moment, correct?)
# TODO: remove global_stats, since we get these directly now
counter = Counter.options(name="global_counter").remote(config)
stats = Stats.options(name="global_stats").remote(config)
try:
print('Attempting to load evolver from save file.')
evolver_path = os.path.join(save_path, 'evolver.pkl')
with open(evolver_path, 'rb') as save_file:
evolver = pickle.load(save_file)
print('Loaded evolver.')
evolver.load()
# change params on reload here
evolver.config.RENDER = config.RENDER
evolver.config.TERRAIN_RENDER = config.TERRAIN_RENDER
evolver.config.NENT = config.NENT
evolver.config.MODEL = 'reload'
evolver.config.ROOT = config.ROOT
evolver.config.N_EVO_MAPS = config.N_EVO_MAPS
evolver.config.N_PROC = config.N_PROC
evolver.config.EVO_SAVE_INTERVAL = config.EVO_SAVE_INTERVAL
evolver.config.N_GENERATIONS = config.N_GENERATIONS
evolver.reloading = True
evolver.epoch_reloaded = evolver.n_epoch
# Running out of RAM depending on size/number of map genomes... try trashing the archive while ray does its
# multiprocessing nonsense garbage?
# Why does this work !!!
# I DO NOT UNDERSTAND MY CODE
global container
container = evolver.container
evolver.container = None
evolver.restore(trash_trainer=True)
# TODO: properly writing to the log is so time-consuming that HPC GPU jobs get cancelled for not using enough GPU.
# move this functionality to a separate batch command that can clean all the csv's at once to allow for proper
# rendering of fitness histogram.
evolver.reload_log()
# evolver.container = container
if config.RENDER:
evolver.config.INFER_IDXS = config.INFER_IDXS
if evolver.MAP_ELITES:
evolver.reload_archive()
if evolver.MAP_ELITES:
return evolver.resume()
except FileNotFoundError as e:
print(e)
print('Cannot load; missing evolver and/or model checkpoint.')
if not (config.EVALUATE or config.VIS_MAPS or config.RENDER):
print('Evolving from scratch.')
evolver = init_evolver(save_path,
createEnv,
None, # init the trainer in evolution script
config,
n_proc= config.N_PROC,
n_pop= config.N_EVO_MAPS,
n_epochs= config.N_GENERATIONS,
)
else:
print('Failed to do evaluation thingy(?)')
raise Exception
# print(torch.__version__)
# print(torch.cuda.current_device())
# print(torch.cuda.device(0))
# print(torch.cuda.device_count())
# print(torch.cuda.get_device_name(0))
# print(torch.cuda.is_available())
# print(torch.cuda.current_device())
if config.RENDER:
evolver.infer()
else:
evolver.evolve()
if __name__ == '__main__':
main()