forked from mistralai/mistral-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_generate.py
96 lines (76 loc) · 2.68 KB
/
test_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
from typing import List
from mistral.model import ModelArgs, Transformer
from main import generate
class DebugTokenizer:
@property
def bos_id(self) -> int:
return 0
@property
def eos_id(self) -> int:
return 1
@property
def pad_id(self) -> int:
return -1
def encode(self, s: str, bos: bool = True) -> List[int]:
assert isinstance(s, str)
t = [int(x) for x in s.split()]
if bos:
t = [self.bos_id, *t]
return t
def decode(self, t: List[int]) -> str:
return " ".join([str(x) for x in t])
def test_generation():
torch.manual_seed(42)
sequences = ["1 2 3 4 5 6 7", "0 1 2", "12 13 14", "2 4 34"]
args = ModelArgs(
dim=512,
n_layers=1,
head_dim=128,
hidden_dim=2048,
n_heads=4,
n_kv_heads=2,
sliding_window=3,
norm_eps=1e-5,
vocab_size=32_000,
max_batch_size=len(sequences),
)
model = Transformer(args).to("cuda", dtype=torch.float32)
tokenizer = DebugTokenizer()
# for attempt in range(10):
toks, all_logprobs_old = generate(sequences, model, tokenizer, max_tokens=7)
toks = [" ".join(r.split(" ")[1:]) for r in toks] # Remove BOS
generated, all_logprobs_new = generate(toks, model, tokenizer, max_tokens=0)
assert generated == []
# Verify that logprobs are the same
assert len(sequences) == len(all_logprobs_old) == len(all_logprobs_new)
for lp_old, lp_new in zip(all_logprobs_old, all_logprobs_new):
assert all([abs(x - y) < 1e-5 for x, y in zip(lp_old, lp_new)]), f"\n{lp_old}\n{lp_new}"
print("All tests passed.")
def test_chunks():
torch.manual_seed(42)
sequences = [" ".join([str(i) for i in range(7)]), " ".join([str(i) for i in range(9, 0, -1)])]
args = ModelArgs(
dim=512,
n_layers=1,
head_dim=128,
hidden_dim=2048,
n_heads=4,
n_kv_heads=2,
sliding_window=4,
norm_eps=1e-5,
vocab_size=32_000,
max_batch_size=3,
)
model = Transformer(args).to("cuda", dtype=torch.float32)
tokenizer = DebugTokenizer()
# for attempt in range(10):
toks, all_logprobs_old = generate(sequences, model, tokenizer, max_tokens=8)
toks = [" ".join(r.split(" ")[1:]) for r in toks] # Remove BOS
generated, all_logprobs_new = generate(toks, model, tokenizer, max_tokens=0, chunk_size=5)
assert len(generated) == 0
for lp_old, lp_new in zip(all_logprobs_old, all_logprobs_new):
assert all([abs(x - y) < 1e-5 for x, y in zip(lp_old, lp_new)]), f"\n{lp_old}\n{lp_new}"
if __name__ == "__main__":
test_generation()
test_chunks()