Skip to content

Latest commit

 

History

History
422 lines (366 loc) · 16.1 KB

14_data_frames.md

File metadata and controls

422 lines (366 loc) · 16.1 KB

Documentation

DataFrames

DataFrames provide a new API for manipulating data within Spark. These provide a more user friendly experience than pure Scala for common queries. The Spark Cassandra Connector provides an integrated DataSource to make creating Cassandra DataFrames easy.

Spark Docs: Data Sources Data Frames

Options

DataSources in Spark take a map of Options which define how the source should act. The Connector provides a CassandraSource which recognizes the following Key Value pairs. Those followed with a default of N/A are required, all others are optional.

Option Key Controls Values Default
table The Cassandra table to connect to String N/A
keyspace The keyspace where table is looked for String N/A
cluster The group of the Cluster Level Settings to inherit String "default"
pushdown Enables pushing down predicates to C* when applicable (true,false) true

####Read, Writing and CassandraConnector Options Any normal Spark Connector configuration options for Connecting, Reading or Writing can be passed through as DataFrame options as well. When using the read command below these options should appear exactly the same as when set in the SparkConf.

####Setting Cluster and Keyspace Level Options The connector also provides a way to describe the options which should be applied to all DataFrames within a cluster or within a keyspace. When a property has been specified at the table level it will override the default keyspace or cluster property.

To add these properties add keys to your SparkConf in the format

clusterName:keyspaceName/propertyName.

Example Changing Cluster/Keyspace Level Properties

sqlContext.setConf("ClusterOne/spark.cassandra.input.split.size_in_mb", "32")
sqlContext.setConf("default:test/spark.cassandra.input.split.size_in_mb", "128")
...
val df = sqlContext
  .read
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "table" -> "words", "keyspace" -> "test"))
  .load() // This DataFrame will use a spark.cassandra.input.size of 32

val otherdf =  sqlContext
  .read
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "table" -> "words", "keyspace" -> "test" , "cluster" -> "ClusterOne"))
  .load() // This DataFrame will use a spark.cassandra.input.size of 128

val lastdf = sqlContext
  .read
  .format("org.apache.spark.sql.cassandra")
  .options(Map(
    "table" -> "words",
    "keyspace" -> "test" ,
    "cluster" -> "ClusterOne",
    "spark.cassandra.input.split.size_in_mb" -> 48
    )
  ).load() // This DataFrame will use a spark.cassandra.input.split.size of 48

There are also some helper method which simplifies setting Spark Cassandra Connector related parameters. They are a part of CassandraSqlContext:

// set params for all clusters and keyspaces
sqlContext.setConf(CassandraConnectorConf.KeepAliveMillisParam.option(10000))

// set params for the particular cluster
sqlContext.setConf("Cluster1", CassandraConnectorConf.ConnectionHostParam.option("127.0.0.1") ++ CassandraConnectorConf.ConnectionPortParam.option(12345))
sqlContext.setConf("Cluster2", CassandraConnectorConf.ConnectionHostParam.option("127.0.0.2"))

// set params for the particular keyspace 
sqlContext.setConf("Cluster1", "ks1", ReadConf.SplitSizeInMBParam.option(128))
sqlContext.setConf("Cluster1", "ks2", ReadConf.SplitSizeInMBParam.option(64))
sqlContext.setConf("Cluster2", "ks3", ReadConf.SplitSizeInMBParam.option(80))

###Creating DataFrames using Read Commands

The most programmatic way to create a data frame is to invoke a read command on the SQLContext. This will build a DataFrameReader. Specify format as org.apache.spark.sql.cassandra. You can then use options to give a map of Map[String,String] of options as described above. Then finish by calling load to actually get a DataFrame.

Example Creating a DataFrame using a Read Command

val df = sqlContext
  .read
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "table" -> "words", "keyspace" -> "test" ))
  .load()
df.show
word count
cat  30
fox  40

There are also some helper methods which can make creating data frames easier. They can be accessed after importing org.apache.spark.sql.cassandra package. In the following example, all the commands used to create a data frame are equivalent:

import org.apache.spark.sql.cassandra._

val df1 = sqlContext
  .read
  .format("org.apache.spark.sql.cassandra")
  .options(Map("table" -> "words", "keyspace" -> "test", "cluster" -> "cluster_A"))
  .load()

val df2 = sqlContext
  .read
  .cassandraFormat("words", "test", "cluster_A")
  .load()

###Creating DataFrames using Spark SQL

Accessing data Frames using Spark SQL involves creating temporary tables and specifying the source as org.apache.spark.sql.cassandra. The OPTIONS passed to this table are used to establish a relation between the CassandraTable and the internally used DataSource.

Example Creating a Source Using Spark SQL:

Create Relation with the Cassandra table test.words

scala> sqlContext.sql(
   """CREATE TEMPORARY TABLE words
     |USING org.apache.spark.sql.cassandra
     |OPTIONS (
     |  table "words",
     |  keyspace "test",
     |  cluster "Test Cluster",
     |  pushdown "true"
     |)""".stripMargin)
scala> val df = sqlContext.sql("SELECT * FROM words")
scala> df.show()
word count
cat  30
fox  40
scala> df.filter(df("count") > 30).show
word count
fox  40

In addition you can use Spark SQL on the registered tables:

sqlContext.sql("SELECT * FROM words WHERE word = 'fox'").collect
Array[org.apache.spark.sql.Row] = Array([fox,40])

###Persisting a DataFrame to Cassandra Using the Save Command DataFrames provide a save function which allows them to persist their data to another DataSource. The connector supports using this feature to persist a DataFrame a Cassandra Table.

Example Copying Between Two Tables Using DataFrames

val df = sqlContext
  .read
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "table" -> "words", "keyspace" -> "test" ))
  .load()

df.write
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "table" -> "words_copy", "keyspace" -> "test"))
  .save()

Similarly to reading Cassandra tables into data frames, we have some helper methods for the write path which are provided by org.apache.spark.sql.cassandra package. In the following example, all the commands are equivalent:

import org.apache.spark.sql.cassandra._

df.write
  .format("org.apache.spark.sql.cassandra")
  .options(Map("table" -> "words_copy", "keyspace" -> "test", "cluster" -> "cluster_B"))
  .save()

df.write
  .cassandraFormat("words_copy", "test", "cluster_B")
  .save()

###Setting Connector specific options on data frames Connector specific options can be set by invoking options method on either DataFrameReader or DataFrameWriter. There are several settings you may want to change in ReadConf, WriteConf, CassandraConnectorConf, AuthConf and others. Those settings are identified by instances of ConfigParameter case class which offers an easy way to apply the option which it represents to a DataFrameReader or DataFrameWriter.

Suppose we want to set spark.cassandra.read.timeout_ms to 7 seconds on some DataFrameReader, we can do this both ways:

option("spark.cassandra.read.timeout_ms", "7000")

Since this setting is represented by CassandraConnectorConf.ReadTimeoutParam we can simply do:

options(CassandraConnectorConf.ReadTimeoutParam.sqlOption("7000"))

Each parameter, that is, each instance of ConfigParameter allows to invoke apply method with a single parameter. That method returns a Map[String, String] (note that you need to use options instead of option) so setting multiple parameters can be chained:

options(CassandraConnectorConf.ReadTimeoutParam.sqlOption("7000") ++ ReadConf.TaskMetricParam.sqlOption(true))

###Creating a New Cassandra Table From a DataFrame Schema Spark Cassandra Connector adds a method to DataFrame that allows it to create a new Cassandra table from the StructType schema of the DataFrame. This is convenient for persisting a DataFrame to a new table, especially when the schema of the DataFrame is not known (fully or at all) ahead of time (at compile time of your application). Once the new table is created, you can persist the DataFrame to the new table using the save function described above.

The partition key and clustering key of the newly generated table can be set by passing in a list of names of columns which should be used as partition key and clustering key.

Example Transform DataFrame and Save to New Table

// Add spark connector specific methods to DataFrame
import com.datastax.spark.connector._

val df = sqlContext
  .read
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "table" -> "words", "keyspace" -> "test" ))
  .load()

val renamed = df.withColumnRenamed("col1", "newcolumnname")
renamed.createCassandraTable(
    "test", 
    "renamed", 
    partitionKeyColumns = Some(Seq("user")), 
    clusteringKeyColumns = Some(Seq("newcolumnname")))

renamed.write
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "table" -> "renamed", "keyspace" -> "test"))
  .save()

###Pushing down clauses to Cassandra The DataFrame API will automatically pushdown valid where clauses to Cassandra as long as the pushdown option is enabled (defaults to enabled.)

Example Table

CREATE KEYSPACE test WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 1 };
USE test;
CREATE table words (
    user  TEXT, 
    word  TEXT, 
    count INT, 
    PRIMARY KEY (user, word));

INSERT INTO words (user, word, count ) VALUES ( 'Russ', 'dino', 10 );
INSERT INTO words (user, word, count ) VALUES ( 'Russ', 'fad', 5 );
INSERT INTO words (user, word, count ) VALUES ( 'Sam', 'alpha', 3 );
INSERT INTO words (user, word, count ) VALUES ( 'Zebra', 'zed', 100 );

First we can create a DataFrame and see that it has no pushdown filters set in the log. This means all requests will go directly to C* and we will require reading all of the data to show this DataFrame.

val df = sqlContext
  .read
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "table" -> "words", "keyspace" -> "test"))
  .load
df.explain
15/07/06 09:21:21 INFO CassandraSourceRelation: filters:
15/07/06 09:21:21 INFO CassandraSourceRelation: pushdown filters: //ArrayBuffer()
== Physical Plan ==
PhysicalRDD [user#0,word#1,count#2], MapPartitionsRDD[2] at explain //at <console>:22
df.show
15/07/06 09:26:03 INFO CassandraSourceRelation: filters:
15/07/06 09:26:03 INFO CassandraSourceRelation: pushdown filters: //ArrayBuffer()

+-----+-----+-----+
| user| word|count|
+-----+-----+-----+
|Zebra|  zed|  100|
| Russ| dino|   10|
| Russ|  fad|    5|
|  Sam|alpha|    3|
+-----+-----+-----+

The example schema has a clustering key of "word" so we can pushdown filters on that column to C*. We do this by applying a normal DataFrame filter. The connector will automatically determine that the filter can be pushed down and will add it to pushdown filters. All of the elements of pushdown filters will be automatically added to the CQL requests made to C* for the data from this table. The subsequent call will then only serialize data from C* which passes the filter, reducing the load on C*.

val dfWithPushdown = df.filter(df("word") > "ham")
dfWithPushdown.explain
15/07/06 09:29:10 INFO CassandraSourceRelation: filters: GreaterThan(word,ham)
15/07/06 09:29:10 INFO CassandraSourceRelation: pushdown filters: ArrayBuffer(GreaterThan(word,ham))
== Physical Plan ==
Filter (word#1 > ham)
 PhysicalRDD [user#0,word#1,count#2], MapPartitionsRDD[18] at explain at <console>:24
dfWithPushdown.show
15/07/06 09:30:48 INFO CassandraSourceRelation: filters: GreaterThan(word,ham)
15/07/06 09:30:48 INFO CassandraSourceRelation: pushdown filters: ArrayBuffer(GreaterThan(word,ham))
+-----+----+-----+
| user|word|count|
+-----+----+-----+
|Zebra| zed|  100|
+-----+----+-----+

####Pushdown Filter Examples Example table

CREATE KEYSPACE IF NOT EXISTS pushdowns WITH replication = { 'class' : 'SimpleStrategy', 'replication_factor' : 3 };
USE pushdowns;

CREATE TABLE pushdownexample (
    partitionkey1 BIGINT,
    partitionkey2 BIGINT,
    partitionkey3 BIGINT,
    clusterkey1   BIGINT,
    clusterkey2   BIGINT,
    clusterkey3   BIGINT,
    regularcolumn BIGINT,
    PRIMARY KEY ((partitionkey1, partitionkey2, partitionkey3), clusterkey1, clusterkey2, clusterkey3)
);
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._

val df = sqlContext
  .read
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "table" -> "pushdownexample", "keyspace" -> "pushdowns" ))
  .load()

To push down partition keys, all of them must be included, but not more than one predicate per partition key, otherwise nothing is pushed down.

df.filter("partitionkey1 = 1 AND partitionkey2 = 1 AND partitionkey3 = 1").show()
INFO  2015-08-26 00:37:40 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: EqualTo(partitionkey1,1), EqualTo(partitionkey2,1), EqualTo(partitionkey3,1)
INFO  2015-08-26 00:37:40 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer(EqualTo(partitionkey1,1), EqualTo(partitionkey2,1), EqualTo(partitionkey3,1))

One partition key left out:

df.filter("partitionkey1 = 1 AND partitionkey2 = 1").show()
INFO  2015-08-26 00:53:07 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: EqualTo(partitionkey1,1), EqualTo(partitionkey2,1)
INFO  2015-08-26 00:53:07 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer()

More than one predicate for partitionkey3:

df.filter("partitionkey1 = 1 AND partitionkey2 = 1 AND partitionkey3 > 0 AND partitionkey3 < 5").show()
INFO  2015-08-26 00:54:03 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: EqualTo(partitionkey1,1), EqualTo(partitionkey2,1), GreaterThan(partitionkey3,0), LessThan(partitionkey3,5)
INFO  2015-08-26 00:54:03 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer()

Clustering keys are more relaxed. But only the last predicate can be non-EQ, and if there is more than one predicate for a column, they must not be EQ or IN, otherwise only some predicates may be pushed down.

df.filter("clusterkey1 = 1 AND clusterkey2 > 0 AND clusterkey2 < 10").show()
INFO  2015-08-26 01:01:02 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: EqualTo(clusterkey1,1), GreaterThan(clusterkey2,0), LessThan(clusterkey2,10)
INFO  2015-08-26 01:01:02 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer(EqualTo(clusterkey1,1), GreaterThan(clusterkey2,0), LessThan(clusterkey2,10))

First predicate not EQ:

df.filter("clusterkey1 > 1 AND clusterkey2 > 1").show()
INFO  2015-08-26 00:55:01 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: GreaterThan(clusterkey1,1), GreaterThan(clusterkey2,1)
INFO  2015-08-26 00:55:01 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer(GreaterThan(clusterkey1,1))

clusterkey2 EQ predicate:

df.filter("clusterkey1 = 1 AND clusterkey2 = 1 AND clusterkey2 < 10").show()
INFO  2015-08-26 00:56:37 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: EqualTo(clusterkey1,1), EqualTo(clusterkey2,1), LessThan(clusterkey2,10)
INFO  2015-08-26 00:56:37 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer(EqualTo(clusterkey1,1), EqualTo(clusterkey2,1))

Next - Python DataFrames