-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcore_method.py
507 lines (486 loc) · 25.4 KB
/
core_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import os
import random
import json
import torch
import time
import numpy as np
from torch import nn
from tqdm import tqdm
from transformers import AutoTokenizer
from collections import defaultdict
from sklearn.metrics.pairwise import cosine_similarity
from utils import codex_execution
import networkx as nx
from copy import deepcopy
import matplotlib.pyplot as plt
import math
import multiprocessing as mp
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def prompt_retrieval(train_embs,test_embs,train_examples,eval_examples,return_string,format_example,
maximum_input_len,args, label_map,prompt_identifier='prompts',single_context_example_len=None, ood = False, test_label_map = None):
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
eval_example_num = len(eval_examples)
train_examples_num = len(train_examples)
bar = tqdm(range(eval_example_num), desc="Retrieve examples from annotated pool")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
prompt_cache_dir = os.path.join(args.output_dir,prompt_identifier)
if not os.path.isdir(prompt_cache_dir):
os.makedirs(prompt_cache_dir, exist_ok=True)
for test_id, one_test_instance in enumerate(eval_examples):
if not ood:
one_test_instance_input_text,one_test_instance_output_text = format_example(example=one_test_instance,args=args,
label_map=label_map)
else:
one_test_instance_input_text = one_test_instance["input"]
one_test_instance_output_text = test_label_map[one_test_instance["label"]]
cur_prompt_string_len = get_instance_length(one_test_instance_input_text,one_test_instance_output_text,tokenizer)[0]
if args.prompt_retrieval_method=='similar':
test_e_reshape = test_embs[test_id].reshape(1, -1)
scores = cos(test_e_reshape, train_embs).numpy()
sorted_indices = np.argsort(scores)
elif args.prompt_retrieval_method=='random':
sorted_indices = np.random.permutation(range(train_examples_num))
else:
raise ValueError(f"The prompt retrieval method {args.prompt_retrieval_method} is not supported")
selected_indices = []
num_indices = len(sorted_indices)
for idx in range(num_indices - 1, -1, -1):
if args.prompt_retrieval_method=='similar' and scores[sorted_indices[idx]]==1:
continue
cur_example_input_text,cur_example_output_text = format_example(example=train_examples[sorted_indices[idx]],
args=args,label_map=label_map)
cur_len = sum(get_instance_length(cur_example_input_text, cur_example_output_text,tokenizer=tokenizer))
if single_context_example_len is not None and cur_len>single_context_example_len:
continue
cur_prompt_string_len += cur_len
if cur_prompt_string_len > maximum_input_len:
break
selected_indices.append(idx)
one_test_emb = test_embs[test_id]
indices_scores = []
for idx in selected_indices:
indices_scores.append(
[idx, cos(train_embs[sorted_indices[idx]].reshape(1, -1), one_test_emb.reshape(1, -1)).item()])
indices_scores = sorted(indices_scores, key=lambda x: x[1], reverse=True)
new_selected_indices = [x[0] for x in indices_scores]
if args.prompt_retrieval_method in ['similar']:
assert new_selected_indices == selected_indices, f"new_selected_indices={new_selected_indices}, " \
f"selected_indices={selected_indices}"
selected_indices = new_selected_indices
select_num = len(selected_indices)
second_phase_selected_indices = []
if return_string:
cur_train_data = ''
else:
cur_train_data = []
for idx in range(select_num - 1, -1, -1):
cur_input_text, cur_output_text = format_example(
example=train_examples[sorted_indices[selected_indices[idx]]],
args=args, label_map=label_map)
if return_string:
cur_train_data += f'{cur_input_text}{cur_output_text}\n\n'
else:
if args.task_name=='hellaswag':
cur_train_data.append({
'input': cur_input_text,
'output': cur_output_text,
'options': train_examples[sorted_indices[selected_indices[idx]]]['endings']
})
else:
cur_train_data.append({
'input': cur_input_text,
'output': cur_output_text
})
second_phase_selected_indices.append([sorted_indices[selected_indices[idx]].item()])
if return_string:
cur_train_data += format_example(
example=one_test_instance,
args=args, label_map=label_map)[0]
with open(os.path.join(prompt_cache_dir,f"{one_test_instance['id']}.json"),'w') as f:
json.dump([[test_id, second_phase_selected_indices, one_test_instance['label']],
cur_train_data,
one_test_instance
], f, indent=4)
bar.update(1)
def fast_votek(embeddings,select_num,k,vote_file=None):
n = len(embeddings)
if vote_file is not None and os.path.isfile(vote_file):
with open(vote_file) as f:
vote_stat = json.load(f)
else:
print("embedding",embeddings.shape)
bar = tqdm(range(n),desc=f'voting')
vote_stat = defaultdict(list)
for i in range(n):
cur_emb = embeddings[i].reshape(1, -1)
cur_scores = np.sum(cosine_similarity(embeddings, cur_emb), axis=1)
sorted_indices = np.argsort(cur_scores).tolist()[-k-1:-1]
for idx in sorted_indices:
if idx!=i:
vote_stat[idx].append(i)
bar.update(1)
if vote_file is not None:
with open(vote_file,'w') as f:
json.dump(vote_stat,f)
votes = sorted(vote_stat.items(),key=lambda x:len(x[1]),reverse=True)
selected_indices = []
selected_times = defaultdict(int)
while len(selected_indices)<select_num:
cur_scores = defaultdict(int)
for idx,candidates in votes:
if idx in selected_indices:
cur_scores[idx] = -100
continue
for one_support in candidates:
if not one_support in selected_indices:
cur_scores[idx] += 10 ** (-selected_times[one_support])
cur_selected_idx = max(cur_scores.items(),key=lambda x:x[1])[0]
selected_indices.append(int(cur_selected_idx))
for idx_support in vote_stat[cur_selected_idx]:
selected_times[idx_support] += 1
return selected_indices
def ic_diffusion_model(G, Seed, iter=10):
count = 0
for i in range(iter):
UsedNodes = deepcopy(Seed)
ActivatedNodes = deepcopy(Seed)
tempSeed = deepcopy(Seed)
CurrentActivatedNodes = []
while tempSeed:
for v in tempSeed:
for w in G.successors(v):
if w not in ActivatedNodes:
if random.random() < G[v][w]["weight"]:
CurrentActivatedNodes.append(w)
UsedNodes.append(w)
tempSeed = CurrentActivatedNodes
ActivatedNodes.extend(CurrentActivatedNodes)
CurrentActivatedNodes = []
count += len(ActivatedNodes)
return count / iter
def infmax(embeddings, select_num, k = 10, rand_iter=10):
n = len(embeddings)
graph = nx.DiGraph()
bar = tqdm(range(n),desc=f'construct graph')
for i in range(n):
cur_emb = embeddings[i].reshape(1, -1)
cur_scores = np.sum(cosine_similarity(embeddings, cur_emb), axis=1)
sorted_indices = np.argsort(cur_scores).tolist()[-k-1:-1]
sum_weight = cur_scores[sorted_indices].sum()
for idx in sorted_indices:
if idx!=i:
graph.add_edge(i, idx, weight = cur_scores[idx]/sum_weight)
bar.update(1)
selected_node = []
out_degrees = graph.out_degree()
max_out_degree_node = max(out_degrees, key=lambda x: x[1])
initial_point = max_out_degree_node[0]
selected_node.append(initial_point)
bar = tqdm(select_num-1,desc=f'vote')
for i in range(select_num-1):
max_influence = 0
best_node = None
for i, node in enumerate(graph.nodes()):
if len(selected_node) == 1 and node in selected_node:
influence = 0
if node not in selected_node:
selected_node.append(node)
influence = ic_diffusion_model(graph, selected_node, rand_iter)
selected_node.remove(node)
if influence > max_influence:
max_influence = influence
best_node = node
if best_node is not None:
selected_node.append(best_node)
bar.update(1)
return selected_node
def generate_diffusion_list(G, seed, random_iter = 1):
diffusion_list = []
diffusion_list.append(seed)
for i in range(random_iter):
UsedNodes = deepcopy(seed)
ActivatedNodes = deepcopy(seed)
tempSeed = deepcopy(seed)
CurrentActivatedNodes = []
index = 1
while tempSeed:
for v in tempSeed:
print("v",v)
for w in G.successors(v):
print("successor",w)
if w not in ActivatedNodes:
if random.random() < G[v][w]["weight"]:
CurrentActivatedNodes.append(w)
UsedNodes.append(w)
tempSeed = CurrentActivatedNodes
ActivatedNodes.extend(CurrentActivatedNodes)
if i == 0:
diffusion_list.append(CurrentActivatedNodes)
else:
if index > len(diffusion_list):
diffusion_list.append(CurrentActivatedNodes)
else:
diffusion_list[index].extend(x for x in CurrentActivatedNodes and x not in diffusion_list[index])
CurrentActivatedNodes = []
index += 1
return diffusion_list
def infmax_diffusion_list(embeddings, select_num, k = 10, rand_iter=10):
n = len(embeddings)
graph = nx.DiGraph()
bar = tqdm(range(n),desc=f'construct graph')
for i in range(n):
cur_emb = embeddings[i].reshape(1, -1)
cur_scores = np.sum(cosine_similarity(embeddings, cur_emb), axis=1)
sorted_indices = np.argsort(cur_scores).tolist()[-k-1:-1]
sum_weight = cur_scores[sorted_indices].sum()
for idx in sorted_indices:
if idx!=i:
graph.add_edge(i, idx, weight = cur_scores[idx]/sum_weight)
bar.update(1)
selected_node = []
out_degrees = graph.out_degree()
max_out_degree_node = max(out_degrees, key=lambda x: x[1])
initial_point = max_out_degree_node[0]
selected_node.append(initial_point)
bar = tqdm(select_num-1,desc=f'vote')
for i in range(select_num-1):
max_influence = 0
best_node = None
for i, node in enumerate(graph.nodes()):
if len(selected_node) == 1 and node in selected_node:
influence = 0
if node not in selected_node:
selected_node.append(node)
influence = ic_diffusion_model(graph, selected_node, rand_iter)
selected_node.remove(node)
if influence > max_influence:
max_influence = influence
best_node = node
if best_node is not None:
selected_node.append(best_node)
bar.update(1)
diffusion_list = generate_diffusion_list(graph, selected_node)
return selected_node, diffusion_list
def iterative_selection(train_embs,test_embs,train_examples,test_examples,return_string,format_example,maximum_input_len,
label_map,single_context_example_len,inference_model,inference_data_module,tokenizer_gpt,args):
if args.selective_annotation_method=='least_confidence':
selected_indices = random.sample(range(len(train_examples)),args.batch_size)
elif args.selective_annotation_method=='votek':
selected_indices = fast_votek(embeddings=train_embs,select_num=args.batch_size,k=150,
vote_file=os.path.join(args.output_dir,'votek_cache.json'))
else:
raise ValueError(f'iterative selection does not support {args.selective_annotation_method}')
if not args.task_name in ['hellaswag', 'xsum','nq']:
all_labels = []
label_to_digit = {}
for k, v in label_map.items():
all_labels.append(v)
label_to_digit[v] = k
batch_count = 0
device = torch.device('cuda')
while len(selected_indices)<args.annotation_size:
batch_count += 1
cur_annotated_examples = [train_examples[idx] for idx in selected_indices]
prompt_retrieval(train_embs=train_embs[selected_indices],
test_embs=test_embs,
train_examples=cur_annotated_examples,
eval_examples=test_examples,
return_string=return_string,
format_example=format_example,
maximum_input_len=maximum_input_len,
args=args,label_map=label_map,
prompt_identifier=f'prompts_{batch_count}',
single_context_example_len=single_context_example_len)
candidate_prompt_files = os.listdir(os.path.join(args.output_dir,f'prompts_{batch_count}'))
prompt_files = [f for f in candidate_prompt_files if f.endswith('.json')]
assert len(prompt_files) == len(test_examples), f"len(prompt_files)={len(prompt_files)}," \
f"len(processed_eval_examples)={len(test_examples)}"
output_dir = os.path.join(args.output_dir,f'results_iteration_{batch_count}')
prompt_dir = os.path.join(args.output_dir,f'prompts_{batch_count}')
if not os.path.isdir(output_dir):
os.makedirs(output_dir, exist_ok=True)
count = 0
execution_count = 0
running_flag = True
while running_flag:
running_flag = False
count += 1
bar = tqdm(range(len(prompt_files)), desc=f" prediction iteration {batch_count}")
for file in prompt_files:
bar.update(1)
if not os.path.isfile(os.path.join(output_dir,file)):
running_flag = True
if args.task_name=='hellaswag':
with open(os.path.join(prompt_dir, file)) as f:
one_test_example = json.load(f)
cur_train_data = one_test_example[1]
cur_input = {'input': format_example(one_test_example[2], label_map=label_map, args=args)[0],
'options': one_test_example[2]['endings']}
inference_data_module.k = len(cur_train_data)
inference_data_module.tensorize(cur_train_data, [cur_input])
prediction = inference_model.do_predict(inference_data_module, require_loss=True)[0]
with open(f"{output_dir}/{file}", 'w') as f:
json.dump(prediction, f)
elif args.task_name=='xsum':
with open(os.path.join(prompt_dir, file)) as f:
one_test_example = json.load(f)
context = one_test_example[1]
input_ids = tokenizer_gpt(context, return_tensors="pt").input_ids
input_ids = input_ids[:, :1900]
input_len = input_ids.shape[1]
input_ids = input_ids.to(device)
gen_tokens = inference_model.generate(input_ids, do_sample=False, temperature=0.7,
max_length=input_len + 64,
output_scores=True, return_dict_in_generate=True)
generated_text = tokenizer_gpt.batch_decode(gen_tokens.sequences.view(-1, 1)) #
stop = ['--', '\n', ';', '#']
stop_index = len(generated_text)
for i, c in enumerate(generated_text):
if i > input_len and c.strip(' ') in stop:
stop_index = i
break
prediction = [' '.join(generated_text[input_len:stop_index]),
sum(gen_tokens.scores[:stop_index - input_len]).tolist()]
with open(f"{output_dir}/{file}", 'w') as f:
json.dump(prediction, f)
else:
with open(os.path.join(prompt_dir, file)) as f:
one_test_example = json.load(f)
cur_train_data = one_test_example[1]
for idx in range(len(cur_train_data)):
cur_train_data[idx]['options'] = all_labels
cur_input = format_example(one_test_example[2],label_map=label_map,args=args)[0]
inference_data_module.k = len(cur_train_data)
inference_data_module.tensorize(cur_train_data, [cur_input], options=all_labels)
prediction = inference_model.do_predict(inference_data_module, require_loss=True)[0]
with open(f"{output_dir}/{file}", 'w') as f:
json.dump(prediction, f)
idx_scores = {}
n = len(test_examples)
for idx in range(n):
if idx in selected_indices:
if args.task_name in ['xsum','nq']:
idx_scores[idx] = float('inf')
else:
idx_scores[idx] = float('-inf')
continue
with open(f"{output_dir}/{idx}.json") as f:
one_pred = json.load(f)
if args.task_name in ['nq']:
idx_scores[idx] = sum(one_pred['choices'][0]["logprobs"]["token_logprobs"]) / len(
one_pred['choices'][0]["logprobs"]["token_logprobs"])
else:
idx_scores[idx] = one_pred[1]
if args.task_name in ['xsum','nq']:
sorted_scores = sorted(idx_scores.items(), key=lambda x: x[1])
else:
sorted_scores = sorted(idx_scores.items(), key=lambda x:x[1],reverse=True)
sorted_scores_len = len(sorted_scores)
if args.selective_annotation_method=='least_confidence':
cur_selected = []
cur_select_num = min(args.batch_size, args.annotation_size - len(selected_indices))
for sorted_scores_iter in range(sorted_scores_len):
if len(cur_selected)>=cur_select_num:
break
if not sorted_scores[sorted_scores_iter][0] in selected_indices:
cur_selected.append(sorted_scores[sorted_scores_iter][0])
selected_indices += cur_selected
else:
with open(os.path.join(args.output_dir,'votek_cache.json')) as f:
vote_stat = json.load(f)
selected_times = defaultdict(int)
select_num_1 = args.annotation_size - len(selected_indices)
inter = int(len(train_examples) * 0.9 / select_num_1)
for prev_idx in selected_indices:
for idx_support in vote_stat[str(prev_idx)]:
selected_times[idx_support] += 1
count_t = 0
while len(selected_indices) < args.annotation_size and count_t * inter < sorted_scores_len:
cur_scores = defaultdict(int)
for idx, _ in sorted_scores[count_t * inter:(count_t + 1) * inter]:
if not str(idx) in vote_stat:
cur_scores[idx] = 0
continue
candidates = vote_stat[str(idx)]
if idx in selected_indices:
cur_scores[idx] = -100
continue
for one_support in candidates:
if not one_support in selected_indices:
cur_scores[idx] += 10 ** (-selected_times[one_support])
cur_selected_idx = max(cur_scores.items(), key=lambda x: x[1])[0]
selected_indices.append(cur_selected_idx)
if cur_selected_idx in vote_stat:
for idx_support in vote_stat[cur_selected_idx]:
selected_times[idx_support] += 1
count_t += 1
if len(selected_indices) < args.annotation_size:
unselected_indices = []
for unselected_i in range(len(train_examples)):
if not unselected_i in selected_indices:
unselected_indices.append(unselected_i)
selected_indices += random.sample(unselected_indices, args.annotation_size - len(selected_indices))
print(f"{args.annotation_size - len(selected_indices)} examples are randomly selected")
return selected_indices
def selective_annotation(args,**kwargs):
if args.selective_annotation_method=='random':
train_examples = kwargs['train_examples']
selected_indices = random.sample(range(len(train_examples)),args.annotation_size)
elif args.selective_annotation_method=='diversity':
embeddings = kwargs['embeddings']
selected_indices = []
first_id = random.choice(range(len(embeddings)))
selected_indices.append(first_id)
selected_representations = embeddings[first_id].reshape(1, -1)
for count in range(args.annotation_size - 1):
scores = np.sum(cosine_similarity(embeddings, selected_representations), axis=1)
for i in selected_indices:
scores[i] = float('inf')
min_idx = np.argmin(scores)
selected_representations = torch.cat((selected_representations,
embeddings[min_idx].reshape(1, -1)), 0)
selected_indices.append(min_idx.item())
elif args.selective_annotation_method=='fast_votek':
selected_indices = fast_votek(embeddings=kwargs['embeddings'],select_num=args.annotation_size,k=150,
vote_file=os.path.join(args.output_dir,'nearest_neighbors.json'))
elif args.selective_annotation_method=='ideal':
selected_indices = infmax(embeddings=kwargs['embeddings'],select_num=args.annotation_size,k=10)
elif args.selective_annotation_method=='mfl':
embeds = kwargs['embeddings']
N, D = embeds.shape
norm_embeds = embeds / embeds.norm(dim=1, keepdim=True)
cosine = torch.einsum('nd,md->nm', norm_embeds, norm_embeds)
selected = torch.zeros(N, dtype=torch.bool)
max_similarity = torch.zeros(N) - 1
for k in tqdm(range(args.annotation_size)):
marginal_gain = torch.relu(cosine - max_similarity).sum(dim=1) * (1 - selected.float())
node = torch.argmax(marginal_gain)
selected[node] = True
max_similarity = torch.max(max_similarity, cosine[node])
selected_indices = torch.nonzero(selected).squeeze().tolist()
elif args.selective_annotation_method in ['votek','least_confidence']:
selected_indices = iterative_selection(train_embs=kwargs['embeddings'],
test_embs=kwargs['embeddings'],
train_examples=kwargs['train_examples'],
test_examples=kwargs['train_examples'],
return_string=kwargs['return_string'],
format_example=kwargs['format_example'],
maximum_input_len=kwargs['maximum_input_len'],
label_map=kwargs['label_map'],
single_context_example_len=kwargs['single_context_example_len'],
inference_model=kwargs['inference_model'],
inference_data_module=kwargs['inference_data_module'],
tokenizer_gpt=kwargs['tokenizer_gpt'],
args=args)
elif args.selective_annotation_method in ['auto_ideal']:
selected_node, diffusion_list = infmax_diffusion_list(embeddings=kwargs['embeddings'],select_num=args.annotation_size,k=10)
return selected_node, diffusion_list
else:
raise ValueError(f'The selective annotation method {args.selective_annotation_method} is not supported')
return selected_indices
def get_instance_length(input_text,output_text,tokenizer):
return len(tokenizer(input_text)['input_ids']),len(tokenizer(output_text)['input_ids'])