-
Notifications
You must be signed in to change notification settings - Fork 547
/
Copy pathresnet_distributed_torch_app.py
54 lines (45 loc) · 1.75 KB
/
resnet_distributed_torch_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from typing import List, Optional
import sky
# Total Nodes, INCLUDING Head Node
num_nodes = 2
# The setup command. Will be run under the working directory.
setup = 'echo \"alias python=python3\" >> ~/.bashrc && pip3 install --upgrade pip && \
[ -d pytorch-distributed-resnet ] || \
(git clone https://github.com/michaelzhiluo/pytorch-distributed-resnet && \
cd pytorch-distributed-resnet && pip3 install -r requirements.txt torch==1.12.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113 && \
mkdir -p data && mkdir -p saved_models && cd data && \
wget -c --quiet https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz && \
tar -xvzf cifar-10-python.tar.gz)'
# The command to run. Will be run under the working directory.
def run_fn(node_rank: int, ip_list: List[str]) -> Optional[str]:
num_nodes = len(ip_list)
return f"""\
cd pytorch-distributed-resnet
python3 -m torch.distributed.launch --nproc_per_node=1 \
--nnodes={num_nodes} --node_rank={node_rank} --master_addr={ip_list[0]} \
--master_port=8008 resnet_ddp.py --num_epochs 20
"""
train = sky.Task(
'train',
setup=setup,
num_nodes=num_nodes,
run=run_fn,
)
train.set_resources({
##### Fully specified
sky.Resources(sky.AWS(), 'p3.2xlarge'),
# sky.Resources(sky.GCP(), 'n1-standard-16'),
#sky.Resources(
# sky.GCP(),
# 'n1-standard-8',
# Options: 'V100', {'V100': <num>}.
# 'V100',
#),
##### Partially specified
#sky.Resources(accelerators='V100'),
# sky.Resources(accelerators='tpu-v3-8'),
# sky.Resources(sky.AWS(), accelerators={'V100': 4}),
# sky.Resources(sky.AWS(), accelerators='V100'),
})
sky.launch(train, cluster_name='dth')
# sky.exec(train, cluster_name='dth')