-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_pneumonia.py
executable file
·124 lines (106 loc) · 3.72 KB
/
detect_pneumonia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python3
import torch
import torch.nn as nn
import os
import torchvision
from torchvision import transforms, datasets
import matplotlib.pyplot as plt
data_dir = '/Users/apple/Downloads/dataset/chest_xray/'
TEST = 'test'
TRAIN = 'train'
# VAL = 'val'
BATCH_SIZE = 10
torch.manual_seed(1)
EPOCH = 10
LR = 0.001
data_transforms = {
TRAIN: transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
#transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), # ( H x W x C) transform to (C x H x W) and normalize to [0,1]
]),
TEST: transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()
])
}
image_datasets = {
x: datasets.ImageFolder(os.path.join(data_dir,x),transform = data_transforms[x])
for x in [TRAIN,TEST]
}
data_loaders = {
x: torch.utils.data.DataLoader(
image_datasets[x],batch_size = BATCH_SIZE,
shuffle = True, num_workers = 4
)
for x in [TRAIN,TEST]
}
data_sizes = {x: len(image_datasets[x]) for x in [TRAIN,TEST]}
for x in [TRAIN,TEST]:
print('Loaded {} images under {} folder'.format(data_sizes[x],x))
print('Classes: ')
class_names = image_datasets[TRAIN].classes
print(class_names)
def imshow(inp,title=None):
inp = inp.numpy().transpose((1,2,0)) # restore tensor image (C x H x W) to ndarray image (H x W x C)
plt.axis('off')
plt.imshow(inp)
if title is not None:
plt.title(title,fontdict={'fontsize':5})
plt.pause(0.001)
def show_databatch(inputs,classes):
out = torchvision.utils.make_grid(inputs,nrow=BATCH_SIZE)
imshow(out,title=[class_names[x] for x in classes])
inputs, classes = next(iter(data_loaders[TRAIN]))
show_databatch(inputs,classes)
class CNN(nn.Module):
def __init__(self):
super(CNN,self).__init__()
self.conv1 = nn.Sequential( # input shape (3,224,224)
nn.Conv2d(
in_channels=3, # input height
out_channels=16, # n_filters
kernel_size=5, # filter size
stride = 1, # filter step
padding = 2,
), # output shape (16,224,224)
nn.ReLU(),
nn.MaxPool2d(kernel_size=2), # output shape (16,112,112)
)
self.conv2 = nn.Sequential( #input shape (16,112,112)
nn.Conv2d(16,32,5,1,2), #output shape (32,112,112)
nn.ReLU(),
nn.MaxPool2d(2), #output shape (32,56,56)
)
self.out1 = nn.Linear(32*56*56,1000)
self.out2 = nn.Linear(1000,16)
self.out3 = nn.Linear(16,2)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0),-1) # output shape (batch_size, 32*56*56)
output = self.out1(x)
output = self.out2(output)
output = self.out3(output)
return output
cnn = CNN()
print(cnn)
optimizer = torch.optim.SGD(cnn.parameters(),lr=LR)
loss_func = nn.CrossEntropyLoss()
for epoch in range(EPOCH):
for step, (batch_x, batch_y) in enumerate(data_loaders[TRAIN]):
output = cnn(batch_x)
loss = loss_func(output, batch_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 25 == 0:
accuracy = 0
for test_x , test_y in iter(data_loaders[TEST]):
test_output = cnn(test_x)
pred_y = torch.max(test_output, 1)[1].data.squeeze()
accuracy += float(torch.sum(pred_y == test_y)) / float(data_sizes[TEST])
print('Epoch: {} | train loss: {:.4f} | test accuracy: {:.2f}'.format(epoch, loss.data.numpy(), accuracy))