-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcartoonify.py
46 lines (37 loc) · 1.25 KB
/
cartoonify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#step 1
#Use bilateral filter for edge-aware smoothing.
import cv2
num_down = 2 # number of downsampling steps
num_bilateral = 7 # number of bilateral filtering steps
img_rgb = cv2.imread("myCat.jpg")
# downsample image using Gaussian pyramid
img_color = img_rgb
for _ in range(num_down):
img_color = cv2.pyrDown(img_color)
# repeatedly apply small bilateral filter instead of
# applying one large filter
for _ in range(num_bilateral):
img_color = cv2.bilateralFilter(img_color, d=9, sigmaColor=9, sigmaSpace=7)
# upsample image to original size
for _ in range(num_down):
img_color = cv2.pyrUp(img_color)
#STEP 2 & 3
#Use median filter to reduce noise
# convert to grayscale and apply median blur
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
img_blur = cv2.medianBlur(img_gray, 7)
#STEP 4
#Use adaptive thresholding to create an edge mask
# detect and enhance edges
img_edge = cv2.adaptiveThreshold(img_blur, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
blockSize=9,
C=2)
# Step 5
# Combine color image with edge mask & display picture
# convert back to color, bit-AND with color image
img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
img_cartoon = cv2.bitwise_and(img_color, img_edge)
# display
cv2.imshow("myCat_cartoon", img_cartoon)