-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatapp.py
130 lines (102 loc) · 3.67 KB
/
chatapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# -*- coding: utf-8 -*-
"""chatapp.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1vkf4IdOWw5MbKB0iT-U8bMvAc6J1fhSC
"""
import nltk
import pickle
import numpy as np
import json
import random
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
from tensorflow.contrib.keras.python.keras.models import load_model
#from keras.models import load_model
model = load_model('/home/shubham/Machine Learning/FireBlaze/ChatBot/2_templet/chatbot_model.h5')
intents = json.loads(open('/home/shubham/Machine Learning/FireBlaze/ChatBot/2_templet/intents.json').read())
words = pickle.load(open('/home/shubham/Machine Learning/FireBlaze/ChatBot/2_templet/words.pkl','rb'))
classes = pickle.load(open('/home/shubham/Machine Learning/FireBlaze/ChatBot/2_templet/classes.pkl','rb'))
def clean_up_sentence(sentence):
#tokenize - split words into array
sentence_words = nltk.word_tokenize(sentence)
#stemming - create short form of word
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
def bow(sentence, words, show_details=True):
#tokenize the pattern
sentecne_words = clean_up_sentence(sentence)
#bow
bag = [0] * len(words)
for s in sentecne_words:
for i,w in enumerate(words):
if w == s:
bag[i] = 1
if show_details:
print("found in bags: %s"% w)
return(np.array(bag))
def predict_class(sentence, model):
#filter out prediction below thresahold
p = bow(sentence, words, show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
#sort by strength by probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent":classes[r[0]], "probability":str(r[1])})
return return_list
#random responce
def getResponse(ints, intents_json):
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if(i['tag'] == tag):
result = random.choice(i['responses'])
break
return result
def chatbot_responce(text):
ints = predict_class(text, model)
res = getResponse(ints, intents)
return res
'''
"""***GUI***"""
import tkinter
from tkinter import *
def send():
msg = EntryBox.get("1.0",'end-1c').strip()
EntryBox.delete("0.0",END)
if msg != '':
ChatLog.config(state=NORMAL)
ChatLog.insert(END, "You:"+msg+'\n\n')
ChatLog.config(foreground='#442265', font=("Verdana",12))
res = chatbot_response(msg)
ChatLog.insert(END,"Bot:"+res+'\n\n')
ChatLog.config(state=DISABLED)
ChatLog.yview(END)
import tkinter
base = Tk()
base.title("Hello")
base.geometry("50*150")
base.resizable(width=FALSE, height=FALSE)
#create chat window
ChatLog = Text(base, bd=0, bg="white", heigt='8', width="50", font = "Arial")
ChatLog.config(state=DISABLE)
#Bind scrollbar to chat window
scrollbar = Scrollbar(base, command=ChatLog.yview, cursr = "heart")
ChatLog['yscrollcommand'] = scrollbar.set
#create button to send message
SendButton = Button(base, font=("Verdana",12,'bold'), text="Send", width="12",
height=5, bd=0, bg="#32de97", activebackground='#3c9a9b',
fg='#ffffff', command=send)
#create the box to enter message
EntryBox = Text(base, bd=0, bg="white", width='29', height="5", font="Arial")
#EntryBox.bind("<Return>", send)
#Place all components on the screen
scrollbar.place(x=376, y=6, height=386)
ChatLog.place(x=6, y=6, height=386, width=370)
EntryBox.place(x=128, y=401, height=90, width=265)
SendButton.place(x=6, y=401, height=90)
base.mainloop()
'''