-
Notifications
You must be signed in to change notification settings - Fork 196
/
Copy pathget_features.cpp
189 lines (169 loc) · 5 KB
/
get_features.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/***
usage:
get_features.exe feat.prototxt H:\Models\Caffe\bvlc_reference_caffenet.caffemodel 6
conv1,fc7,prob,argmax conv1.dat,fc7.dat,prob.dat,argmax.dat GPU 0
for feat.prototxt, see the following example:
name: "CaffeNet"
state {
phase: TEST
}
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
transform_param {
mirror: false
crop_size: 227
mean_file: "imagenet_mean.binaryproto"
}
image_data_param {
source: "file_list.txt"
batch_size: 1
new_height: 256
new_width: 256
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
}
}
#################################################################################
######some lines are ignored here for simplicity, complete them by yourself######
#################################################################################
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
inner_product_param {
num_output: 1000
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "fc8"
top: "prob"
}
layer {
name: "argmax"
type: "ArgMax"
bottom: "prob"
top: "argmax"
argmax_param {
top_k: 1
}
}
for file_list.txt, see the following example:
H:\Data\ILSVRC2012\n01440764\n01440764_18.JPEG 0
H:\Data\ILSVRC2012\n01440764\n01440764_297.JPEG 0
H:\Data\ILSVRC2012\n01443537\n01443537_395.JPEG 1
H:\Data\ILSVRC2012\n01443537\n01443537_693.JPEG 1
H:\Data\ILSVRC2012\n01518878\n01518878_103.JPEG 9
H:\Data\ILSVRC2012\n01518878\n01518878_477.JPEG 9
How to load features in Matlab? use the following function, see:
prob = sc_load('prob.dat');
function data = sc_load(filename, type)
if ~exist('type', 'var') || isempty(type)
type = 'single';
end
fid = fopen(filename, 'r');
rows = fread(fid, 1, type);
cols = fread(fid, 1, type);
data = fread(fid, rows * cols, type);
fclose(fid);
data = reshape(data, rows, cols);
switch type
case 'int32'
data = int32(data);
case 'single'
data = single(data);
end
end
***/
#include <string>
#include <vector>
#include "boost/algorithm/string.hpp"
#include "caffe/caffe.hpp"
using boost::shared_ptr;
using std::string;
using namespace caffe;
#define MAX_FEAT_NUM 16
int main(int argc, char** argv)
{
if (argc < 6)
{
LOG(ERROR) << "get_features proto_file model_file iterations blob_name1[,name2] save_name1[,name2]"
<< "[CPU/GPU] [Device ID]";
return 1;
}
Phase phase = TEST;
if (argc >= 7 && strcmp(argv[6], "GPU") == 0)
{
Caffe::set_mode(Caffe::GPU);
int device_id = 0;
if (argc == 8)
{
device_id = atoi(argv[7]);
}
Caffe::SetDevice(device_id);
LOG(ERROR) << "Using GPU #" << device_id;
} else {
LOG(ERROR) << "Using CPU";
Caffe::set_mode(Caffe::CPU);
}
boost::shared_ptr<Net<float> > feature_net;
feature_net.reset(new Net<float>(argv[1], phase));
feature_net->CopyTrainedLayersFrom(argv[2]);
int total_iter = atoi(argv[3]);
LOG(ERROR) << "Running " << total_iter << " iterations.";
std::string feature_blob_names(argv[4]);
std::vector<std::string> blob_names;
boost::split(blob_names, feature_blob_names, boost::is_any_of(","));
std::string save_file_names(argv[5]);
std::vector<std::string> file_names;
boost::split(file_names, save_file_names, boost::is_any_of(","));
CHECK_EQ(blob_names.size(), file_names.size()) <<
" the number of feature blob names and save file names must be equal";
size_t num_features = blob_names.size();
for (size_t i = 0; i < num_features; i++)
{
CHECK(feature_net->has_blob(blob_names[i]))
<< "Unknown feature blob name " << blob_names[i] << " in the network";
}
FILE *fp[MAX_FEAT_NUM];
for (size_t i = 0; i < num_features; i++)
{
fp[i] = fopen(file_names[i].c_str(), "wb");
}
for (int i = 0; i < total_iter; ++i)
{
feature_net->ForwardPrefilled();
for (int j = 0; j < num_features; ++j)
{
const boost::shared_ptr<Blob<float> > feature_blob = feature_net->blob_by_name(blob_names[j]);
float num_imgs = feature_blob->num() * total_iter;
float feat_dim = feature_blob->count() / feature_blob->num();
const float* data_ptr = (const float *) feature_blob->cpu_data();
if (i == 0)
{
fwrite(&feat_dim, sizeof(float), 1, fp[j]);
fwrite(&num_imgs, sizeof(float), 1, fp[j]);
}
fwrite(data_ptr, sizeof(float), feature_blob->count(), fp[j]);
}
}
for (size_t i = 0; i < num_features; i++)
{
fclose(fp[i]);
}
return 0;
}