-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
81 lines (63 loc) · 2.69 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# -----------
# NOTE: this approach is specific to this particular competition
#
# The MAP metric here just boils down to knowing where you ended up ranking the actual ad that was clicked, relative
# to the other ads in its display context.
# -----------
# Now this is a quicker way to evaluate your score without needing to groupby or use the default MAP@ functions.
#
# After sorting each context in order of decreasing predicted probability, and giving each row in the dataset a sequential
# index, then the delta between the index of the clicked ad, and the index of the first ad in the context, will give you
# the relative rank of the clicked ad within each context
import time
import numpy as np
import pandas as pd
#convert the data frame to lib ffm format
#convert the data frame to lib ffm format
def data_frame_to_lib_ffm(frame,key,field_list): #no le currenlty
new_frame=pd.DataFrame()
for column_name in frame.columns:
if column_name in field_list:
if column_name!=key:
col=[str(field_list[column_name])+':'+str(row)+':1' for row in frame[column_name]]
else:
col=frame[column_name]
new_frame[column_name]=col
return new_frame
def fast_mapk(validation_set):
#input: validation set with display_id,likelihood,clicked
validation_set.sort_values(['display_id', 'likelihood'], inplace=True, ascending=[True, False] )
t=time.time()
validation_set["seq"] = np.arange(validation_set.shape[0])
print time.time()-t
t=time.time()
Y_seq = validation_set[ validation_set.clicked == 1 ].seq.values
print time.time()-t
t=time.time()
Y_first = validation_set[['display_id', 'seq']].drop_duplicates(subset='display_id', keep='first').seq.values
print time.time()-t
t=time.time()
Y_ranks = Y_seq - Y_first
print time.time()-t
t=time.time()
# At this point, some simplification of the MAP function given what we know about this competition gives us this quick calc
score = np.mean( 1.0 / (1.0 + Y_ranks) )
print time.time()-t
print("MAP: %.12f" % score)
def slow_mapk(val):
t=time.time()
val.sort_values(['display_id', 'likelihood'], inplace=True, ascending=[True, False] )
print time.time()-t
t=time.time()
# Slower way
from ml_metrics import mapk
Y_ads = val[ val.clicked == 1 ].ad_id.values.reshape(-1,1)
print time.time()-t
t=time.time()
P_ads = val.groupby(by='display_id', sort=False).ad_id.apply( lambda x: x.values ).values
print time.time()-t
t=time.time()
score = mapk( Y_ads, P_ads, 12 )
print time.time()-t
t=time.time()
print("MAP: %.12f" % score)