forked from zfit/zfit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
signal_bkg_mass_extended_fit_binned.py
87 lines (65 loc) · 2.3 KB
/
signal_bkg_mass_extended_fit_binned.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright (c) 2023 zfit
import matplotlib.pyplot as plt
import mplhep
import numpy as np
import zfit
n_bins = 50
# create space
obs_binned = zfit.Space("x", binning=zfit.binned.RegularBinning(50, -10, 10, name="x"))
obs = obs_binned.with_binning(None)
# parameters
mu = zfit.Parameter("mu", 1.0, -4, 6)
sigma = zfit.Parameter("sigma", 1.0, 0.1, 10)
lambd = zfit.Parameter("lambda", -0.06, -1, -0.01)
# model building, pdf creation
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
exponential = zfit.pdf.Exponential(lambd, obs=obs)
n_bkg = zfit.Parameter("n_bkg", 20000)
n_sig = zfit.Parameter("n_sig", 1000)
gauss_extended = gauss.create_extended(n_sig)
exp_extended = exponential.create_extended(n_bkg)
model_unbinned = zfit.pdf.SumPDF([gauss_extended, exp_extended])
# make binned
model = zfit.pdf.BinnedFromUnbinnedPDF(model_unbinned, space=obs_binned)
# data
n_sample = 21200
data = model.sample(n=n_sample)
n_bins = 50
plot_scaling = n_sample / n_bins * obs.area()
x = np.linspace(-10, 10, 1000)
def plot_pdf(title):
plt.figure()
plt.title(title)
y = model.pdf(x).numpy()
y_gauss = (gauss.pdf(x) * model_unbinned.params["frac_0"]).numpy()
y_exp = (exponential.pdf(x) * model_unbinned.params["frac_1"]).numpy()
plt.plot(x, y * plot_scaling, label="Sum - Model")
plt.plot(x, y_gauss * plot_scaling, label="Gauss - Signal")
plt.plot(x, y_exp * plot_scaling, label="Exp - Background")
# mplhep.histplot(np.histogram(data_np, bins=n_bins), yerr=True, color='black', histtype='errorbar')
mplhep.histplot(data.to_hist(), yerr=True, color="black", histtype="errorbar")
plt.ylabel("Counts")
plt.xlabel("obs: $B_{mass}$")
plt.legend()
# set the values to a start value for the fit
mu.set_value(0.5)
sigma.set_value(1.2)
lambd.set_value(-0.05)
# create NLL
nll = zfit.loss.ExtendedBinnedNLL(model=model, data=data)
# create a minimizer
minimizer = zfit.minimize.Minuit()
plot_pdf("before fit")
result = minimizer.minimize(nll)
print(result.params)
# do the error calculations, here with hesse, than with minos
param_hesse = result.hesse()
(
param_errors,
_,
) = result.errors() # this returns a new FitResult if a new minimum was found
print(result.valid) # check if the result is still valid
# plot the data
plot_pdf("after fit")
# uncomment to display plots
plt.show()