forked from zfit/zfit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
signal_bkg_mass_extended_fit.py
64 lines (49 loc) · 1.61 KB
/
signal_bkg_mass_extended_fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright (c) 2023 zfit
import pprint
import zfit
import pickle
n_bins = 50
# create space
obs = zfit.Space("x", limits=(-10, 10))
# parameters
mu = zfit.Parameter("mu", 1.0, -4, 6)
sigma = zfit.Parameter("sigma", 1.0, 0.1, 10)
lambd = zfit.Parameter("lambda", -0.06, -1, -0.01)
# model building, pdf creation
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
exponential = zfit.pdf.Exponential(lambd, obs=obs)
n_bkg = zfit.Parameter("n_bkg", 20000)
n_sig = zfit.Parameter("n_sig", 1000)
gauss_extended = gauss.create_extended(n_sig)
exp_extended = exponential.create_extended(n_bkg)
model = zfit.pdf.SumPDF([gauss_extended, exp_extended])
# data
# n_sample = 10000
data = model.create_sampler(n=21200)
data.resample()
# set the values to a start value for the fit
mu.set_value(0.5)
sigma.set_value(1.2)
lambd.set_value(-0.05)
# create NLL
nll = zfit.loss.ExtendedUnbinnedNLL(model=model, data=data)
# create a minimizer
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
print(result.params)
# do the error calculations, here with hesse, than with minos
param_hesse = result.hesse()
(
param_errors,
_,
) = result.errors() # this returns a new FitResult if a new minimum was found
print(result.valid) # check if the result is still valid
# EXPERIMENTAL: we can serialize the model to a human-readable format with HS3
# or we can simply pickle the result (first freezing it)
import zfit.serialization as zserial
# human readable representation
pprint.pprint(zfit.hs3.dumps(model))
result.freeze()
dumped = pickle.dumps(result)
loaded = pickle.loads(dumped)
zfit.param.set_values(model.get_params(), loaded)