-
Notifications
You must be signed in to change notification settings - Fork 29
/
cls_feature_class.py
350 lines (291 loc) · 14.4 KB
/
cls_feature_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Contains routines for labels creation, features extraction and normalization
#
import os
import numpy as np
import scipy.io.wavfile as wav
from sklearn import preprocessing
from sklearn.externals import joblib
from IPython import embed
import matplotlib.pyplot as plot
import librosa
plot.switch_backend('agg')
class FeatureClass:
def __init__(self, dataset_dir='', feat_label_dir='', dataset='foa', is_eval=False):
"""
:param dataset: string, dataset name, supported: foa - ambisonic or mic- microphone format
:param is_eval: if True, does not load dataset labels.
"""
# Input directories
self._feat_label_dir = feat_label_dir
self._dataset_dir = dataset_dir
self._dataset_combination = '{}_{}'.format(dataset, 'eval' if is_eval else 'dev')
self._aud_dir = os.path.join(self._dataset_dir, self._dataset_combination)
self._desc_dir = None if is_eval else os.path.join(self._dataset_dir, 'metadata_dev')
# Output directories
self._label_dir = None
self._feat_dir = None
self._feat_dir_norm = None
# Local parameters
self._is_eval = is_eval
self._fs = 48000
self._hop_len_s = 0.02
self._hop_len = int(self._fs * self._hop_len_s)
self._frame_res = self._fs / float(self._hop_len)
self._nb_frames_1s = int(self._frame_res)
self._win_len = 2 * self._hop_len
self._nfft = self._next_greater_power_of_2(self._win_len)
self._dataset = dataset
self._eps = np.spacing(np.float(1e-16))
self._nb_channels = 4
# Sound event classes dictionary # DCASE 2016 Task 2 sound events
self._unique_classes = dict()
self._unique_classes = \
{
'clearthroat': 2,
'cough': 8,
'doorslam': 9,
'drawer': 1,
'keyboard': 6,
'keysDrop': 4,
'knock': 0,
'laughter': 10,
'pageturn': 7,
'phone': 3,
'speech': 5
}
self._doa_resolution = 10
self._azi_list = range(-180, 180, self._doa_resolution)
self._length = len(self._azi_list)
self._ele_list = range(-40, 50, self._doa_resolution)
self._height = len(self._ele_list)
self._audio_max_len_samples = 60 * self._fs # TODO: Fix the audio synthesis code to always generate 60s of
# audio. Currently it generates audio till the last active sound event, which is not always 60s long. This is a
# quick fix to overcome that. We need this because, for processing and training we need the length of features
# to be fixed.
# For regression task only
self._default_azi = 180
self._default_ele = 50
if self._default_azi in self._azi_list:
print('ERROR: chosen default_azi value {} should not exist in azi_list'.format(self._default_azi))
exit()
if self._default_ele in self._ele_list:
print('ERROR: chosen default_ele value {} should not exist in ele_list'.format(self._default_ele))
exit()
self._max_frames = int(np.ceil(self._audio_max_len_samples / float(self._hop_len)))
def _load_audio(self, audio_path):
fs, audio = wav.read(audio_path)
audio = audio[:, :self._nb_channels] / 32768.0 + self._eps
if audio.shape[0] < self._audio_max_len_samples:
zero_pad = np.zeros((self._audio_max_len_samples - audio.shape[0], audio.shape[1]))
audio = np.vstack((audio, zero_pad))
elif audio.shape[0] > self._audio_max_len_samples:
audio = audio[:self._audio_max_len_samples, :]
return audio, fs
# INPUT FEATURES
@staticmethod
def _next_greater_power_of_2(x):
return 2 ** (x - 1).bit_length()
def _spectrogram(self, audio_input):
_nb_ch = audio_input.shape[1]
nb_bins = self._nfft // 2
spectra = np.zeros((self._max_frames, nb_bins, _nb_ch), dtype=complex)
for ch_cnt in range(_nb_ch):
stft_ch = librosa.core.stft(audio_input[:, ch_cnt], n_fft=self._nfft, hop_length=self._hop_len,
win_length=self._win_len, window='hann')
spectra[:, :, ch_cnt] = stft_ch[1:, :self._max_frames].T
return spectra
def _extract_spectrogram_for_file(self, audio_filename):
audio_in, fs = self._load_audio(os.path.join(self._aud_dir, audio_filename))
audio_spec = self._spectrogram(audio_in)
# print('\t{}'.format(audio_spec.shape))
np.save(os.path.join(self._feat_dir, '{}.npy'.format(audio_filename.split('.')[0])), audio_spec.reshape(self._max_frames, -1))
# OUTPUT LABELS
def read_desc_file(self, desc_filename, in_sec=False):
desc_file = {
'class': list(), 'start': list(), 'end': list(), 'ele': list(), 'azi': list()
}
fid = open(desc_filename, 'r')
next(fid)
for line in fid:
split_line = line.strip().split(',')
desc_file['class'].append(split_line[0])
# desc_file['class'].append(split_line[0].split('.')[0][:-3])
if in_sec:
# return onset-offset time in seconds
desc_file['start'].append(float(split_line[1]))
desc_file['end'].append(float(split_line[2]))
else:
# return onset-offset time in frames
desc_file['start'].append(int(np.floor(float(split_line[1])*self._frame_res)))
desc_file['end'].append(int(np.ceil(float(split_line[2])*self._frame_res)))
desc_file['ele'].append(int(split_line[3]))
desc_file['azi'].append(int(split_line[4]))
fid.close()
return desc_file
def get_list_index(self, azi, ele):
azi = (azi - self._azi_list[0]) // 10
ele = (ele - self._ele_list[0]) // 10
return azi * self._height + ele
def get_matrix_index(self, ind):
azi, ele = ind // self._height, ind % self._height
azi = (azi * 10 + self._azi_list[0])
ele = (ele * 10 + self._ele_list[0])
return azi, ele
def _get_doa_labels_regr(self, _desc_file):
azi_label = self._default_azi*np.ones((self._max_frames, len(self._unique_classes)))
ele_label = self._default_ele*np.ones((self._max_frames, len(self._unique_classes)))
for i, ele_ang in enumerate(_desc_file['ele']):
start_frame = _desc_file['start'][i]
end_frame = self._max_frames if _desc_file['end'][i] > self._max_frames else _desc_file['end'][i]
azi_ang = _desc_file['azi'][i]
class_ind = self._unique_classes[_desc_file['class'][i]]
if (azi_ang >= self._azi_list[0]) & (azi_ang <= self._azi_list[-1]) & \
(ele_ang >= self._ele_list[0]) & (ele_ang <= self._ele_list[-1]):
azi_label[start_frame:end_frame + 1, class_ind] = azi_ang
ele_label[start_frame:end_frame + 1, class_ind] = ele_ang
else:
print('bad_angle {} {}'.format(azi_ang, ele_ang))
doa_label_regr = np.concatenate((azi_label, ele_label), axis=1)
return doa_label_regr
def _get_se_labels(self, _desc_file):
se_label = np.zeros((self._max_frames, len(self._unique_classes)))
for i, se_class in enumerate(_desc_file['class']):
start_frame = _desc_file['start'][i]
end_frame = self._max_frames if _desc_file['end'][i] > self._max_frames else _desc_file['end'][i]
se_label[start_frame:end_frame + 1, self._unique_classes[se_class]] = 1
return se_label
def get_labels_for_file(self, _desc_file):
"""
Reads description csv file and returns classification based SED labels and regression based DOA labels
:param _desc_file: csv file
:return: label_mat: labels of the format [sed_label, doa_label],
where sed_label is of dimension [nb_frames, nb_classes] which is 1 for active sound event else zero
where doa_labels is of dimension [nb_frames, 2*nb_classes], nb_classes each for azimuth and elevation angles,
if active, the DOA values will be in degrees, else, it will contain default doa values given by
self._default_ele and self._default_azi
"""
se_label = self._get_se_labels(_desc_file)
doa_label = self._get_doa_labels_regr(_desc_file)
label_mat = np.concatenate((se_label, doa_label), axis=1)
# print(label_mat.shape)
return label_mat
def get_clas_labels_for_file(self, _desc_file):
"""
Reads description file and returns classification format labels for SELD
:param _desc_file: csv file
:return: _labels: matrix of SELD labels of dimension [nb_frames, nb_classes, nb_azi*nb_ele],
which is 1 for active sound event and location else zero
"""
_labels = np.zeros((self._max_frames, len(self._unique_classes), len(self._azi_list) * len(self._ele_list)))
for _ind, _start_frame in enumerate(_desc_file['start']):
_tmp_class = self._unique_classes[_desc_file['class'][_ind]]
_tmp_azi = _desc_file['azi'][_ind]
_tmp_ele = _desc_file['ele'][_ind]
_tmp_end = self._max_frames if _desc_file['end'][_ind] > self._max_frames else _desc_file['end'][_ind]
_tmp_ind = self.get_list_index(_tmp_azi, _tmp_ele)
_labels[_start_frame:_tmp_end + 1, _tmp_class, _tmp_ind] = 1
return _labels
# ------------------------------- EXTRACT FEATURE AND PREPROCESS IT -------------------------------
def extract_all_feature(self):
# setting up folders
self._feat_dir = self.get_unnormalized_feat_dir()
create_folder(self._feat_dir)
# extraction starts
print('Extracting spectrogram:')
print('\t\taud_dir {}\n\t\tdesc_dir {}\n\t\tfeat_dir {}'.format(
self._aud_dir, self._desc_dir, self._feat_dir))
for file_cnt, file_name in enumerate(os.listdir(self._aud_dir)):
print('{}: {}'.format(file_cnt, file_name))
wav_filename = '{}.wav'.format(file_name.split('.')[0])
self._extract_spectrogram_for_file(wav_filename)
def preprocess_features(self):
# Setting up folders and filenames
self._feat_dir = self.get_unnormalized_feat_dir()
self._feat_dir_norm = self.get_normalized_feat_dir()
create_folder(self._feat_dir_norm)
normalized_features_wts_file = self.get_normalized_wts_file()
spec_scaler = None
# pre-processing starts
if self._is_eval:
spec_scaler = joblib.load(normalized_features_wts_file)
print('Normalized_features_wts_file: {}. Loaded.'.format(normalized_features_wts_file))
else:
print('Estimating weights for normalizing feature files:')
print('\t\tfeat_dir: {}'.format(self._feat_dir))
spec_scaler = preprocessing.StandardScaler()
for file_cnt, file_name in enumerate(os.listdir(self._feat_dir)):
print('{}: {}'.format(file_cnt, file_name))
feat_file = np.load(os.path.join(self._feat_dir, file_name))
spec_scaler.partial_fit(np.concatenate((np.abs(feat_file), np.angle(feat_file)), axis=1))
del feat_file
joblib.dump(
spec_scaler,
normalized_features_wts_file
)
print('Normalized_features_wts_file: {}. Saved.'.format(normalized_features_wts_file))
print('Normalizing feature files:')
print('\t\tfeat_dir_norm {}'.format(self._feat_dir_norm))
for file_cnt, file_name in enumerate(os.listdir(self._feat_dir)):
print('{}: {}'.format(file_cnt, file_name))
feat_file = np.load(os.path.join(self._feat_dir, file_name))
feat_file = spec_scaler.transform(np.concatenate((np.abs(feat_file), np.angle(feat_file)), axis=1))
np.save(
os.path.join(self._feat_dir_norm, file_name),
feat_file
)
del feat_file
print('normalized files written to {}'.format(self._feat_dir_norm))
# ------------------------------- EXTRACT LABELS AND PREPROCESS IT -------------------------------
def extract_all_labels(self):
self._label_dir = self.get_label_dir()
print('Extracting labels:')
print('\t\taud_dir {}\n\t\tdesc_dir {}\n\t\tlabel_dir {}'.format(
self._aud_dir, self._desc_dir, self._label_dir))
create_folder(self._label_dir)
for file_cnt, file_name in enumerate(os.listdir(self._desc_dir)):
print('{}: {}'.format(file_cnt, file_name))
wav_filename = '{}.wav'.format(file_name.split('.')[0])
desc_file = self.read_desc_file(os.path.join(self._desc_dir, file_name))
label_mat = self.get_labels_for_file(desc_file)
np.save(os.path.join(self._label_dir, '{}.npy'.format(wav_filename.split('.')[0])), label_mat)
# ------------------------------- Misc public functions -------------------------------
def get_classes(self):
return self._unique_classes
def get_normalized_feat_dir(self):
return os.path.join(
self._feat_label_dir,
'{}_norm'.format(self._dataset_combination)
)
def get_unnormalized_feat_dir(self):
return os.path.join(
self._feat_label_dir,
'{}'.format(self._dataset_combination)
)
def get_label_dir(self):
if self._is_eval:
return None
else:
return os.path.join(
self._feat_label_dir, '{}_label'.format(self._dataset_combination)
)
def get_normalized_wts_file(self):
return os.path.join(
self._feat_label_dir,
'{}_wts'.format(self._dataset)
)
def get_default_azi_ele_regr(self):
return self._default_azi, self._default_ele
def get_nb_channels(self):
return self._nb_channels
def nb_frames_1s(self):
return self._nb_frames_1s
def get_hop_len_sec(self):
return self._hop_len_s
def get_azi_ele_list(self):
return self._azi_list, self._ele_list
def get_nb_frames(self):
return self._max_frames
def create_folder(folder_name):
if not os.path.exists(folder_name):
print('{} folder does not exist, creating it.'.format(folder_name))
os.makedirs(folder_name)