-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel1-checkpoint.py
130 lines (71 loc) · 2.22 KB
/
model1-checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
# In[2]:
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = pandas.read_csv(url, names=names)
# In[4]:
print(dataset.head())
# In[5]:
print(dataset.shape)
# In[6]:
print(dataset.describe())
# In[8]:
print(dataset.groupby('class').size())
# In[14]:
dataset.plot(kind='box',subplots=True, layout=(2,2), sharex='True', sharey='True')
plt.show()
# In[15]:
dataset.hist()
plt.show()
# In[17]:
array= dataset.values
X=array[:,0:4]
Y=array[:,4]
validation_size=0.20
seed=7
X_train,X_test,Y_train,Y_test=model_selection.train_test_split(X,Y,test_size=validation_size,random_state=seed)
# In[20]:
seed=7
scoring='accuracy'
# In[4]:
models=[]
models.append(('LR',LogisticRegression()))
models.append(('LDA',LinearDiscriminantAnalysis()))
models.append(('KNN',KNeighborsClassifier()))
models.append(('CART',DecisionTreeClassifier()))
models.append(('NB',GaussianNB()))
models.append(('SVM',SVC()))
results=[]
names=[]
for name, model in models:
kfold=model_selection.KFold(n_splits=10,random_state=seed)
cv_results=model_selection.cross_val_score(model,X_train,Y_train,cv=kfold,scoring=scoring)
results.append(cv_results)
names.append(name)
msg="%s: %f (%f)" % (name,cv_results.mean(),cv_results.std())
print(msg)
# In[3]:
print(results)
# In[29]:
knn=KNeighborsClassifier()
knn.fit(X_train,Y_train)
predictions=knn.predict(X_test)
print((accuracy_score(Y_test,predictions))*100)
print(confusion_matrix(Y_test,predictions))
print(classification_report(Y_test,predictions))
# In[ ]: