-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
51 lines (36 loc) · 1.49 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
<!-- run rmarkdown::render('README.Rmd', output_file = 'README.md', encoding = 'utf8') -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```
# kaefa
The goal of kaefa is to improving research capability to identify unexplained factor structure with complexly cross-classified multilevel structured data in R environment with automated exploratory factor analysis (aefa) framework
## Installation
You can install kaefa from github with:
```{r gh-installation, eval = TRUE}
# install.packages("devtools")
devtools::install_github("seonghobae/kaefa")
```
## Example
This is a basic example which shows you how to solve a common problem:
```{r example}
## basic example code
library('kaefa')
mod1 <- kaefa::aefa(mirt::Science)
mod1
```
## software quality information
### ubuntu and mac environment
[![Travis-CI Build Status](https://travis-ci.org/seonghobae/kaefa.svg?branch=master)](https://travis-ci.org/seonghobae/kaefa)
### windows environment
[![AppVeyor Build Status](https://ci.appveyor.com/api/projects/status/github/seonghobae/kaefa?branch=master&svg=true)](https://ci.appveyor.com/project/seonghobae/kaefa)
<!-- ### code quality -->
<!-- [![Coverage Status](https://img.shields.io/codecov/c/github/seonghobae/kaefa/master.svg?maxAge=3600)](https://codecov.io/github/seonghobae/kaefa?branch=master) -->
[Contributor Code of Conduct](CONDUCT.md)