-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcausality_simulation.py
1187 lines (1085 loc) · 49.5 KB
/
causality_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import matplotlib.pyplot as plt
import ipywidgets as wd
import pandas as pd
from IPython.display import display, update_display, Javascript, HTML
from inspect import signature
from graphviz import Digraph
import scipy.stats as sp
import plotly.express as px
import plotly.graph_objects as go
import warnings
import re
'''
Data structure
--------------
CausalNetwork
* complete network of all nodes
* init_data
* no per-experiment data
CausalNode
* causal relations from a single node
Experiment
* group assignment
* intervention
'''
# TODO: assignment(config=) change format config to {'group_name': '1-500'} (but maybe a list of dicts is better for preserving ordering)
# TODO: assignment string must be within the total number of samples
# TODO: assignment mustn't have overlapping groups
display(HTML('''<style>
[title="Assigned samples:"] { min-width: 150px; }
</style>'''))
def dialog(body):
display(Javascript(f"alert('{body}')"))
class CausalNetwork:
def __init__(self):
self.nodes = {} # 'node_name': node
self.init_data = pd.DataFrame()
def addNode(self, node):
if node.name in self.nodes.keys(): # check for duplicate nodes
raise ValueError('A node with the same name %s already exists!' % node['name'])
self.nodes[node.name] = node
def addCause(self, effect, cause):
self.nodes[effect].setCause(func=lambda x: x, causes=[cause]) # func has to be an unlifted function, so don't use identity here!
# to be run at the beginning of each notebook
def init(self, data):
'''
initialises the network and its constituent nodes
data: {'some_node': [val, val, ...], ...} all arrays must have same size
'''
l = []
for name, n in self.nodes.items():
if n.causes is None: # is an init node, populate init_data column, throws error if arrays don't have same size
self.init_data[name] = data[name]
n.root_causes = n.traceRoots()
self.replacePlaceholders(n)
# TODO: validate causal network has no single-direction loops (other loops are allowed)
def generateSingle(self, row):
'''
Returns one row of pandas table
row: single row of DataFrame or dict {'some_node': val, ...}
'''
total_nodes = len(self.nodes)
new_row = {name: row[name] for name in self.nodes.keys() if name in row.keys() and not pd.isnull(row[name])} # populate new_row with values of init nodes or fixed nodes
while len(new_row) < total_nodes:
for name, n in self.nodes.items():
if name not in new_row.keys():
ready = True # checks if all its causes have been evaluated or fixed
for c in n.root_causes:
if c not in new_row.keys():
ready = False
break
if ready: # evaluate this node using values from its .causes
cause_vals = {c: new_row[c] for c in n.root_causes}
new_row[name] = n.evaluate(cause_vals)
return new_row
# replaces all PlaceholderNodes of a node's causes by the actual node searched by name
def replacePlaceholders(self, node):
if isinstance(node, PlaceholderNode):
raise ValueError('A PlaceholderNode cannot be passed directly to replacePlaceholders. Use it on the parent instead.')
elif node.causes is not None:
for i, n in enumerate(node.causes):
if isinstance(n, PlaceholderNode):
if n.name not in self.nodes:
raise ValueError("Node %s doesn't exist in the causal network!" % n.name)
node.causes[i] = self.nodes[n.name] # replace
else:
self.replacePlaceholders(n) # recurse down the tree
def draw(self, root, intermediate=False):
'''
Returns a graphviz visualization of the underlying causal network.
root: the root node in the visualization
intermediate: set True to show unnamed intermediate nodes for debugging
'''
g = Digraph(name=root)
def draw_edges(node, g):
if node.causes:
causes = node.causes if intermediate else [self.nodes[name] for name in node.root_causes]
for c in causes:
g.edge(str(c.name), str(node.name))
draw_edges(c, g)
draw_edges(self.nodes[root], g)
return g
class CausalNode:
def __init__(self, name=None):
self.name = name if name else id(self) # given name or use unique id
self.causes = None # array of node type arguments to f. None means this is an init node
self.func = None # only takes positional arguments
self.root_causes = set() # set of names of PlaceholderNodes that this node directly depends on
def setCause(self, func, causes):
self.causes = causes
self.func = func
def traceRoots(self):
'''
Stores a list of names of (string-named) nodes that this node depends on
'''
root_causes = set()
if self.causes is None:
return root_causes
for c in self.causes:
if isinstance(c, PlaceholderNode):
root_causes.add(c.name)
else:
root_causes = root_causes.union(c.traceRoots()) # recurse down the network
return root_causes
def evaluate(self, params):
'''
Evaluates the value of this node given the values of nodes in root_causes
kwargs.keys() must match root_causes TODO: validate this somewhere?
'''
if self.causes is None:
raise ValueError('This is an init node. evaluate() should not have been called.')
cause_vals = [None] * len(self.causes)
for i, c in enumerate(self.causes):
if isinstance(c.name, str): # if predefined node (i.e. not intermediate node)
cause_vals[i] = params[c.name]
else: # recurse down the tree
cause_vals[i] = c.evaluate(params)
return self.func(*cause_vals)
# placeholder node that only has a name, used to look up the actual node in the CausalNetwork
class PlaceholderNode(CausalNode):
pass
class ContinuousNode(CausalNode):
def __init__(self, name=None, min=0, max=100):
super().__init__(name=name)
self.min = min
self.max = max
class DiscreteNode(CausalNode):
def __init__(self, name=None, min=0, max=100):
super().__init__(name=name)
self.min = min
self.max = max
class CategoricalNode(CausalNode):
def __init__(self, name=None, categories=[]):
super().__init__(name=name)
self.categories = categories
class Experiment:
def __init__(self, network):
self.network = network
self.N = len(self.network.init_data)
self.data = self.network.init_data.copy()
self.assigned = False # has the assignment step been run
self.done = False # has the experiment been done
self.a = None # AssignmentPlot, overwritten when .plotAssignment is run
def assignment(self, config=None, hide_random=False):
'''
UI for group assignment of samples
config: list of dicts, each being {'name': group_name, 'samples_str': string}
samples_str: e.g. '1-25,30,31-34', if all groups have empty string '' then assume randomise
'''
self.group_assignment = GroupAssignment(self)
if config is not None:
self.group_assignment.setAssignment(config, hide_random)
self.submitAssignment()
def setAssignment(self, groups):
'''
Populates the 'Group' column of self.data without UI
groups: list of dicts, each being {'name': group_name, 'samples': [array]}
'''
# check for duplicates and populate self.data
self.data['Group'] = None # eventually the column should all be group names
seen = []
for g in groups:
if g['name'] in seen:
dialog('Some of the groups have been given the same name. Please choose a unique name for each group.')
return
else:
seen.append(g['name'])
if g['samples'] is None:
dialog('Invalid assignment of samples to groups! Please revise your assignments.')
return
for i in g['samples']:
self.data.at[i,'Group'] = g['name']
self.groups = [g['name'] for g in groups] # list of group names
self.group_ids = {name: i for i, name in enumerate(self.groups)} # for easier lookup of group ids
if None in self.data['Group'].unique():
dialog('Not all samples have been assigned to a group! Please revise your assignments.')
return
self.assigned = True
if self.a:
self.a.updateAssignments()
else:
self.plotAssignment()
def submitAssignment(self, sender=None):
'''
Collects the group assignments from UI
Checks for duplicate group names
'''
self.setAssignment(self.group_assignment.getAssignment())
def plotAssignment(self):
'''
Can be implemented differently in different scenarios. Extend the Experiment class and override this method
'''
pass
def setting(self, show='all', config=None, disable=[]):
'''
Let user design experiment
disabled: array of names
show: array of names
'''
if not self.assigned:
dialog('You have not yet assigned any groups! Click on "Visualise assignment" before running this box.')
return
disable = self.network.nodes.keys() if disable == 'all' else disable
self.intervention_setting = InterventionSetting(self, show=show, disable=disable)
if config is not None:
self.intervention_setting.setIntervention(config)
self.doExperiment(config)
def generate(self, intervention=[]):
'''
Generates experimental data for all groups according to intervention. Stores results in .data
intervention: list of dicts, each being {'name': 'some_group', 'intervention': {'some_node': [args], ...}, ...}
intervention format:
['fixed', val] (val could be number or name of category)
['range', start, end]
['array', [...]] array size must be n
'''
# reset the dataframe to just group assignments
for key in self.data:
if key != 'Group':
self.data.drop(key, axis=1)
for g in intervention:
group = g['name']
inter = g['intervention']
n = len(self.data.loc[self.data['Group'] == group].index) # number of samples in group
for name, args in inter.items():
if args[0] == 'fixed':
to_fix = args[1]
elif args[0] == 'range':
to_fix = np.random.permutation(np.linspace(args[1], args[2], n))
if isinstance(self, DiscreteNode):
to_fix = np.rint(to_fix)
elif args[0] == 'array':
to_fix = args[1]
# populate only those entries that are intervened on
self.data.loc[self.data['Group'] == group, name] = to_fix
# generate the rest of each row using the existing values
for i in range(len(self.data)):
new_vals = self.network.generateSingle(self.data.loc[i])
for name, val in new_vals.items():
self.data.at[i, name] = val # use loc or iloc?
def doExperiment(self, intervention, msg=False):
'''
Perform experiment under intervention
intervention: {'group_name': {'node_name': [...]}}
'''
self.generate(intervention)
self.done = True
if msg:
display(wd.Label(value='Data from experiment collected!'))
def plot(self, show='all'):
'''
Plots data after doExperiment has been called
'''
if not self.done:
dialog('You have not yet performed the experiment! Click on "Perform experiment" before running this box.')
return
p = InteractivePlot(self, show)
self.p = p
p.display()
class TruffulaExperiment(Experiment):
def __init__(self):
super().__init__(truffula)
def plotAssignment(self):
self.a = AssignmentPlot(self)
def plotOrchard(self, gradient=None, show='all'):
'''
Plots a scatterplot of the orchard layout with coloring to represent the variables listed in SHOW.
The default coloring is from the variable listed under GRADIENT, but there is a dropdown list for students to select
another variable to visualize.
'''
if not self.done:
dialog('You have not yet performed the experiment! Click on "Perform experiment" before running this box.')
return
o = OrchardPlot(self, gradient=gradient, show=show)
self.o = o
o.display()
class BasketballExperiment(Experiment):
def __init__(self):
super().__init__(basketball)
def plotAssignment(self):
self.a = AssignmentPlot(self)
class GroupAssignment:
def __init__(self, experiment):
'''
UI for group assignment of samples
submitAssignment: callback function
'''
self.experiment = experiment
wd.Label(value='Sample size: %d' % self.experiment.N)
self.randomise_button = wd.Button(description='Randomise assignment', layout=wd.Layout(width='180px'))
self.group_assignments = [SingleGroupAssignment(1)]
self.add_group_button = wd.Button(description='Add another group')
self.submit_button = wd.Button(description='Visualise assignment')
self.box = wd.VBox([g.box for g in self.group_assignments])
display(self.randomise_button, self.box, self.add_group_button, self.submit_button)
self.randomise_button.on_click(self.randomise)
self.add_group_button.on_click(self.addGroup)
self.submit_button.on_click(self.experiment.submitAssignment)
def setAssignment(self, config, hide_random):
for i in range(len(config)-1):
self.addGroup()
self.greyAll()
for i in range(len(config)):
self.group_assignments[i].setName(config[i]['name'])
if ''.join([g['samples_str'] for g in config]) == '':
self.randomise()
else:
for i in range(len(config)):
self.group_assignments[i].setSamples(config[i]['samples_str'])
if hide_random:
self.randomise_button.layout.visibility = 'hidden'
def addGroup(self, sender=None):
i = self.group_assignments[-1].i
self.group_assignments.append(SingleGroupAssignment(i+1))
self.box.children = [g.box for g in self.group_assignments]
def getAssignment(self):
'''
Reads the settings and returns a list of dictionaries
'''
return [g.getAssignment() for g in self.group_assignments]
def randomise(self, sender=None):
'''
Randomly assigns samples to groups and changes settings in UI
'''
N = self.experiment.N
N_group = len(self.group_assignments)
assigned_ids = randomAssign(N, N_group)
for i in range(N_group):
self.group_assignments[i].samples.value = array2Text(assigned_ids[i])
def greyAll(self):
self.randomise_button.disabled = True
self.add_group_button.disabled = True
self.submit_button.disabled = True
for g in self.group_assignments:
g.greyAll()
class SingleGroupAssignment:
def __init__(self, i):
'''
UI for a single line of group assignment
'''
self.i = i # Group number
self.name = 'Group %d' % i
i_text = wd.Label(value=self.name, layout=wd.Layout(width='70px'))
self.group_name = wd.Text(description='Name:')
self.samples = wd.Text(description='Assigned samples:', layout=wd.Layout(width='400px'))
self.box = wd.HBox([i_text, self.group_name, self.samples])
def getAssignment(self):
'''
Returns dict {'name': group_name, 'samples': [list_of_sample_ids]}
'''
assignment = dict()
self.name = self.name if self.group_name.value == '' else self.group_name.value
assignment['name'] = self.name
assignment['samples'] = text2Array(self.samples.value)
return assignment
def setName(self, name):
self.group_name.value = name
def setSamples(self, samples):
self.samples.value = samples
def greyAll(self):
self.group_name.disabled = True
self.samples.disabled = True
class InterventionSetting:
def __init__(self, experiment, show='all', disable=[]):
self.experiment = experiment
self.group_settings = [SingleGroupInterventionSetting(self.experiment, g, len(self.experiment.data.loc[self.experiment.data['Group'] == g].index), show=show, disable=disable) for g in self.experiment.groups]
submit = wd.Button(description='Perform experiment')
display(submit)
submit.on_click(self.submit)
def submit(self, sender=None):
self.experiment.doExperiment(self.getIntervention(), msg=True)
def getIntervention(self):
return [{'name': s.name, 'intervention': s.getIntervention()} for s in self.group_settings]
def setIntervention(self, config):
for c in config:
j = self.experiment.group_ids[c['name']]
self.group_settings[j].setIntervention(c)
class SingleGroupInterventionSetting:
def __init__(self, experiment, name, N, show='all', disable=[]):
'''
UI settings for a single group
config: {'name': group_name, 'samples': [sample_ids]}
'''
self.experiment = experiment
self.name = name
self.N = N
group_text = wd.Label(value='Group name: %s, %d samples' % (name, N))
display(group_text)
to_list = list(self.experiment.network.nodes.keys()) if show == 'all' else show
to_list = [a for a in to_list if a not in self.experiment.network.init_data.keys()]
to_list.sort()
self.node_settings = [SingleNodeInterventionSetting(self.experiment.network.nodes[n], disable=n in disable) for n in to_list]
def getIntervention(self):
intervention = dict()
for s in self.node_settings:
inter = s.getIntervention()
if inter is not None:
intervention[s.name] = inter
return intervention
def setIntervention(self, config):
for s in self.node_settings:
if s.name in config['intervention'].keys():
s.setIntervention(config['intervention'][s.name])
class SingleNodeInterventionSetting:
def __init__(self, node, disable=False):
'''
Single line of radio buttons and text boxes for intervening on a single variable in a single group
'''
self.name = node.name
self.disable = disable
self.is_categorical = isinstance(node, CategoricalNode)
self.indent = wd.Label(value='', layout=wd.Layout(width='20px'))
self.text = wd.Label(value=self.name, layout=wd.Layout(width='180px'))
self.none = wd.RadioButtons(options=['No intervention'], layout=wd.Layout(width='150px'))
self.fixed = wd.RadioButtons(options=['Fixed'], layout=wd.Layout(width='70px'))
self.fixed.index = None
if self.is_categorical:
fixed_arg = wd.Dropdown(options=node.categories, disabled=True, layout=wd.Layout(width='100px'))
else:
fixed_arg = wd.BoundedFloatText(disabled=True, layout=wd.Layout(width='70px'))
self.fixed_arg = fixed_arg
self.range_visibility = 'hidden' if self.is_categorical else 'visible'
self.range = wd.RadioButtons(options=['Range'], layout=wd.Layout(width='70px', visibility=self.range_visibility))
self.range.index = None
self.range_arg1_text = wd.Label(value='from', layout=wd.Layout(visibility=self.range_visibility, width='30px'))
a = 0 if self.is_categorical else node.min
b = 0 if self.is_categorical else node.max
self.range_arg1 = wd.BoundedFloatText(min=a, max=b, disabled=True, layout=wd.Layout(width='70px', visibility=self.range_visibility))
self.range_arg2_text = wd.Label(value='to', layout=wd.Layout(visibility=self.range_visibility, width='15px'))
self.range_arg2 = wd.BoundedFloatText(min=a, max=b, disabled=True, layout=wd.Layout(width='70px', visibility=self.range_visibility))
self.none.observe(self.none_observer, names=['value'])
self.fixed.observe(self.fixed_observer, names=['value'])
self.range.observe(self.range_observer, names=['value'])
self.box = wd.HBox([self.indent, self.text, self.none, self.fixed, self.fixed_arg, self.range, self.range_arg1_text, self.range_arg1, self.range_arg2_text, self.range_arg2])
display(self.box)
if self.disable:
self.greyAll()
def greyAll(self):
self.none.disabled = True
self.fixed.disabled = True
self.fixed_arg.disabled = True
self.range.disabled = True
self.range_arg1.disabled = True
self.range_arg2.disabled = True
def setIntervention(self, intervention):
if intervention[0] == 'fixed':
self.fixed.index = 0
self.fixed_arg.value = intervention[1]
elif intervention[0] == 'range':
self.range.index = 0
self.range_arg1.value = intervention[1]
self.range_arg2.value = intervention[2]
# Radio button .index = None if off, .index = 0 if on
def none_observer(self, sender):
if self.none.index == 0:
self.fixed.index = None
self.fixed_arg.disabled = True
self.range.index = None
self.range_arg1.disabled = True
self.range_arg2.disabled = True
if self.disable:
self.greyAll()
def fixed_observer(self, sender):
if self.fixed.index == 0:
self.none.index = None
self.fixed_arg.disabled = False
self.range.index = None
self.range_arg1.disabled = True
self.range_arg2.disabled = True
if self.disable:
self.greyAll()
def range_observer(self, sender):
if self.range.index == 0:
self.none.index = None
self.fixed.index = None
self.fixed_arg.disabled = True
self.range_arg1.disabled = False
self.range_arg2.disabled = False
if self.disable:
self.greyAll()
def getIntervention(self):
'''
generates intervention from UI settings
'''
if self.none.index == 0: # None is deselected, 0 is selected
return None
elif self.fixed.index == 0:
return ['fixed', self.fixed_arg.value]
elif self.range.index == 0:
return ['range', self.range_arg1.value, self.range_arg2.value]
class AssignmentPlot:
'''
AssignmentPlots are displayed when a student clicks "Show Assignment" to select a way to assign variables to
groups--they depict the student's choice of group assignments. This plot must be specified for each type of experiment
because different experiments have different initial attributes that require different kinds of visualizations.
e.g. the Basketball experiment must plot students with different heights, the Truffula experiment must plot trees and
their x, y coordinates
'''
def __init__(self, experiment):
self.experiment = experiment
self.group_names = experiment.groups
self.data = experiment.data
self.buildTraces()
if type(self.experiment).__name__ == 'TruffulaExperiment':
self.layout = go.Layout(title=dict(text='Tree Group Assignments'), barmode='overlay', height=650, width=800,
xaxis=dict(title='Longitude', fixedrange=True), yaxis=dict(title='Latitude', fixedrange=True),
hovermode='closest',
margin=dict(b=80, r=200, autoexpand=False),
showlegend=True)
elif type(self.experiment).__name__ == 'BasketballExperiment':
self.layout = go.Layout(title=dict(text='Student Group Assignments'), barmode='overlay', height=650, width=800,
xaxis=dict(title='Student', fixedrange=True),
yaxis=dict(title='Height (cm)', fixedrange=True, range=(120, 200)),
hovermode='closest',
margin=dict(b=80, r=200, autoexpand=False),
showlegend=True)
else: # must be extended for other kinds of experiments, layouts go here
pass
self.plot = go.FigureWidget(data=self.traces, layout=self.layout)
display(self.plot)
def buildTraces(self):
'''
Builds the plotly.go traces that are to be included in the visualization. Differs by type of experiment PLOT,
so extend here if adding another experiment.
'''
self.traces = []
self.group_names = self.experiment.groups
self.data = self.experiment.data
if type(self.experiment).__name__ == 'TruffulaExperiment':
for i, name in enumerate(self.group_names):
self.traces += [go.Scatter(x=self.data[self.data['Group'] == name]['Longitude'], y=self.data[self.data['Group'] == name]['Latitude'], mode='markers', hovertemplate='Latitude: %{x} <br>Longitude: %{y} <br>', marker_symbol=i, name=name)]
elif type(self.experiment).__name__ == 'BasketballExperiment':
for i, name in enumerate(self.group_names):
self.traces += [go.Bar(x=self.data[self.data['Group'] == name].index, y=self.data[self.data['Group'] == name]['Height (cm)'], hovertemplate='Student: %{x} <br>Height: %{y} cm<br>', name=name)]
else: # must be extended for other kinds of experiments, traces go here
pass
def updateAssignments(self):
'''
Updates the assignment plot's traces and layout when student clicks Visualise Assignment after having already visualized
the assignment once
'''
self.buildTraces()
with self.plot.batch_update():
self.plot.data = []
for trace in self.traces:
self.plot.add_traces(trace)
self.plot.layout = self.layout
class OrchardPlot:
'''
For TruffulaExperiment only; plots a scatterplot of the trees' coordinate locations, colored by the variable GRADIENT
and with a dropdown list that includes all variables listed in SHOW. Includes a colorbar.
'''
def __init__(self, experiment, gradient=None, show='all'):
self.data = experiment.data
self.experiment = experiment
if show == 'all':
self.options = [col for col in self.data.columns if type(col) is str and col != 'Group']
else:
self.options = show
for node in experiment.network.nodes:
if isinstance(node, CategoricalNode) and node.name in show:
self.options.remove(name)
self.options.sort()
if not gradient:
gradient = self.options[0]
self.textbox = wd.Dropdown(
description='Gradient: ',
value=gradient,
options=self.options
)
self.textbox.observe(self.response, names="value")
self.plotOrchard(gradient)
def validate(self):
return self.textbox.value in self.options
def response(self, change):
if self.validate():
with self.g.batch_update():
for i, name in enumerate(self.experiment.groups):
self.g.data[i].marker.color = self.data[self.data['Group'] == name][self.textbox.value]
self.g.update_layout({'coloraxis':{'colorscale':'Plasma', 'colorbar':{'title':self.textbox.value}}})
self.g.data[i].hovertemplate = 'Latitude: %{x} <br>Longitude: %{y} <br>' + self.textbox.value + ': %{marker.color}<br>'
def plotOrchard(self, gradient):
'''
Creates/Initializes a FigureWidget object with a scatterplot of the trees and colors it with the variable GRADIENT
'''
traces = []
for i, name in enumerate(self.experiment.groups):
traces += [go.Scatter(x=self.data[self.data['Group'] == name]['Longitude'], y=self.data[self.data['Group'] == name]['Latitude'],
marker=dict(color=self.data[self.data['Group'] == name][gradient], coloraxis='coloraxis'),
mode='markers',
name=name,
hovertemplate='Latitude: %{x} <br>Longitude: %{y} <br>'+ self.textbox.value + ': %{marker.color}<br>', hoverlabel=dict(namelength=0), marker_symbol=i)]
width = 700 if (len(self.experiment.groups) == 1) else 725 + max([len(name) for name in self.experiment.groups])*6.5
go_layout = go.Layout(title=dict(text='Orchard Layout'),barmode='overlay', height=650, width=width,
xaxis=dict(title='Longitude', fixedrange=True, range=[-50, 1050]),
yaxis=dict(title='Latitude', fixedrange=True, range=[-50, 1050]),
hovermode='closest', legend=dict(yanchor="top", y=1, xanchor="left", x=1.25),
coloraxis={'colorscale':'Plasma', 'colorbar':{'title':gradient}})
self.g = go.FigureWidget(data=traces, layout=go_layout)
def display(self):
container = wd.HBox([self.textbox])
display(wd.VBox([container, self.g]))
class InteractivePlot:
'''
An interactive plot that plots experiment results. Includes a dropdown list that changes the variables plotted. Automatically
chooses the plot type depending on the type of variables involved.
'''
def __init__(self, experiment, show='all'):
self.experiment = experiment
self.x_options = list(experiment.network.nodes.keys())
self.y_options = self.x_options.copy()
if show != 'all':
for i in self.x_options.copy():
if i not in show:
self.x_options.remove(i)
self.y_options.remove(i)
self.x_options.sort()
self.y_options.sort()
self.y_options += ['None (Distributions Only)']
self.textbox1 = wd.Dropdown(
description='x-Axis Variable: ',
value=self.x_options[0],
options=self.x_options
)
self.textbox2 = wd.Dropdown(
description='y-Axis Variable: ',
value=self.y_options[0],
options=self.y_options
)
self.button = wd.RadioButtons(
options=list(experiment.data.keys()) + ['All'],
layout={'width': 'max-content'},
description='Group',
disabled=False
)
self.observe()
self.initTraces()
def display(self):
container = wd.HBox([self.textbox1, self.textbox2])
display(wd.VBox([container, self.g]))
display(self.button)
display(Nothing(), display_id='1')
self.button.layout.display = 'none'
def display_values(self, group):
'''
Displays the correlations and p-values for each group in an annotation below the plot
'''
text = ""
xType, yType = type(self.experiment.network.nodes[self.textbox1.value]).__name__, type(self.experiment.network.nodes[self.textbox2.value]).__name__
if xType != 'CategoricalNode' and yType != 'CategoricalNode':
with warnings.catch_warnings():
warnings.simplefilter("ignore")
x = self.experiment.data[self.experiment.data['Group'] == group][self.textbox1.value]
y = self.experiment.data[self.experiment.data['Group'] == group][self.textbox2.value]
r, p, ci_lo, ci_hi = pearsonr_ci(x,y)
text += group + ': ' + 'Correlation (r) is ' + '{0:#.3f}, '.format(r) + 'P-value is ' + '{0:#.3g}, '.format(p) +f'confidence interval for corr is [{round(ci_lo,2)}, {round(ci_hi,2)}] '
return text
def createTraces(self, x, y):
'''
Returns the traces and layout depending on the appropriate trace type for the variables selected (X and Y)
'''
traces = []
annotations = []
annotation_y = -0.20 - 0.02*len(self.experiment.groups)
traceType = self.choose_trace(x, y)
if traceType == 'histogram':
for group in self.experiment.groups:
data = self.experiment.data[self.experiment.data['Group'] == group]
if type(self.experiment.network.nodes[x]).__name__ == 'CategoricalNode': # if counts of categories, make opacity 1 because bars will not overlap
opacity = 1
else:
opacity = 0.75
traces += [go.Histogram(x=data[x], name=group, bingroup=1, opacity=opacity)]
y = 'Count'
barmode = 'overlay'
elif traceType == 'scatter':
for group in self.experiment.groups:
data = self.experiment.data[self.experiment.data['Group'] == group]
traces += [go.Scatter(x=data[x], y=data[y], mode='markers', opacity=0.75, name=group)]
annotations += [dict(xref='paper',yref='paper',x=0.5, y=annotation_y, showarrow=False, text=self.display_values(group))] # adds annotations with spacing that include the correlation/p-value
annotation_y += -0.05
barmode = 'overlay'
elif traceType == 'bar':
for group in self.experiment.groups:
data = self.experiment.data[self.experiment.data['Group'] == group]
avg = data.groupby(x).agg('mean')
std = data.groupby(x).agg('std')[y]
traces += [go.Bar(x=list(avg.index), y=avg[y], name=group, error_y=dict(type='data', array=std))]
annotations += [dict(xref='paper',yref='paper',x=0.5, y=annotation_y, showarrow=False, text=self.display_values(group))] # adds annotations with spacing that include the correlation/p-value
annotation_y += -0.05
barmode = 'group'
elif traceType == 'barh':
for group in self.experiment.groups:
data = self.experiment.data[self.experiment.data['Group'] == group]
avg = data.groupby(y).agg('mean')
std = data.groupby(y).agg('std')[x]
traces += [go.Bar(x=avg[x], y=list(avg.index), name=group, error_x=dict(type='data', array=std), orientation='h')]
annotations += [dict(xref='paper',yref='paper',x=0.5, y=annotation_y, showarrow=False, text=self.display_values(group))] # adds annotations with spacing that include the correlation/p-value
annotation_y += -0.05
barmode = 'group'
go_layout = go.Layout(title=dict(text=x if traceType == 'histogram' else x + " vs. " + y ),
barmode=barmode,
height=500+50,
width=800,
xaxis=dict(title=x), yaxis=dict(title=y),
annotations = annotations,
margin=dict(b=80+50, r=200, autoexpand=False))
return traces, go_layout
def initTraces(self):
'''
Initializes a FigureWidget with the traces and layout
'''
traces, layout = self.createTraces(self.x_options[0], self.y_options[0])
self.g = go.FigureWidget(layout=layout)
for t in traces:
self.g.add_traces(t)
def updateTraces(self):
'''
Updates the FigureWidget with the appropriate traces and layout after a new dropdown item is selected
'''
self.g.data = []
traces, layout = self.createTraces(self.textbox1.value, self.textbox2.value)
for t in traces:
self.g.add_traces(t)
self.g.layout.annotations = layout.annotations
self.g.layout = layout
def observe(self):
self.textbox1.observe(self.response, names="value")
self.textbox2.observe(self.response, names="value")
self.button.observe(self.update_table, names='value')
def choose_trace(self, x, y):
'''
Returns the appropriate trace type given the variables X and Y according to their variable types
'''
if y == 'None (Distributions Only)':
return 'histogram'
xType, yType = type(self.experiment.network.nodes[x]).__name__, type(self.experiment.network.nodes[y]).__name__
if xType != 'CategoricalNode' and yType != 'CategoricalNode':
return 'scatter'
elif xType == 'CategoricalNode' and yType != 'CategoricalNode':
return 'bar'
elif xType != 'CategoricalNode' and yType == 'CategoricalNode':
return 'barh'
else:
return 'table'
def pivot_table(self):
'''
Creates a pivot table for categorical variables
'''
if self.textbox1.value == self.textbox2.value:
df = "Cannot create a pivot table with only one variable"
return df
if self.button.value == 'All':
for group in self.experiment.groups:
df = pd.DataFrame()
df = pd.concat([df, self.experiment.data[group]])
df = df.groupby([self.textbox1.value, self.textbox2.value]).agg('count').reset_index().pivot(self.textbox1.value, self.textbox2.value, self.options[0])
else:
df = self.experiment.data[self.button.value].groupby([self.textbox1.value, self.textbox2.value]).agg('count').reset_index().pivot(self.textbox1.value, self.textbox2.value, self.options[0])
return df
def update_table(self, change):
'''
Displays the pivot table and button display for pivot table options if applicable
'''
update_display(self.pivot_table(), display_id='1');
self.button.layout.display = 'flex'
def validate(self):
return self.textbox1.value in self.x_options and self.textbox2.value in (self.x_options + ['None (Distributions Only)'])
def response(self, change):
'''
Updates the display when a new dropdown item is selected
'''
if self.validate():
traceType = self.choose_trace(self.textbox1.value, self.textbox2.value)
with self.g.batch_update():
if traceType == 'table': # if the variables are both categorical, displays a pivot table
self.g.update_layout({'height':10, 'width':10})
self.g.layout.xaxis.title = ""
self.g.layout.yaxis.title = ""
self.g.layout.title = ""
self.button.layout.display = 'flex'
else:
self.updateTraces()
update_display(Nothing(), display_id='1') # update pivot table display with nothing if not categorical
self.button.layout.display = 'none'
class Nothing:
'''
Used with IPython.display (particularly when updating displays) to display nothing
'''
def __init__(self):
None
def __repr__(self):
return ""
def text2Array(text):
text = text.replace(' ', '')
if re.fullmatch(r'^((\d+)(|-(\d+)),)*(\d+)(|-(\d+))$', text) is None:
return None
matches = re.findall(r'((\d+)-(\d+))|(\d+)', text)
ids = []
for m in matches:
if m[3] != '':
ids = np.concatenate((ids, [int(m[3])-1])) # Subtract one because text starts at 1, array starts at 0
else:
if int(m[2]) < int(m[1]):
return None
else:
ids = np.concatenate((ids, np.arange(int(m[1])-1, int(m[2]))))
uniq = list(set(ids))
uniq.sort()
if len(ids) != len(uniq):
return None
return uniq
def array2Text(ids):
ids.sort()
ids = np.array(ids)+1 # Add one because text starts at 1, array starts at 0
segments = []
start = ids[0]
end = ids[0]
for j in range(len(ids)):
if j == len(ids)-1:
end = ids[j]
s = str(start) if start == end else '%d-%d' % (start, end)
segments.append(s)
elif ids[j+1] != ids[j]+1:
end = ids[j]
s = str(start) if start == end else '%d-%d' % (start, end)
segments.append(s)
start = ids[j+1]
return ','.join(segments)
def randomAssign(N, N_group):
'''
Randomly assigns N total items into N_group groups
Returns a list of lists of ids
'''
arr = np.arange(N)
np.random.shuffle(arr)
result = []
for i in range(N_group):
start = i*N//N_group
end = min((i+1)*N//N_group, N)
result.append(arr[start:end])
return result
# returns a placeholder CausalNode whose name can be used to look up the actual node in the CausalNetwork
def node(name):
return PlaceholderNode(name=name)
# lifts a function that can takes any non-node inputs into an equivalent function in which the inputs can also be nodes. lift(func) cannot take arrays of nodes as input
def lift(func):
def liftedFunc(*args, **kwargs): # should have exactly the same format as the unlifted func
n_args = len(args) # number of positional arguments
names = list(kwargs.keys())
vargs = list(args) + [kwargs[name] for name in names] # combine all arguments into positional arguments
nargs = [v for v in vargs if isinstance(v, CausalNode)] # only node type arguments
node_inds = [i for i, v in enumerate(vargs) if isinstance(v, CausalNode)] # positions in vargs of all node type arguments. node_inds[i] = position of nargs[i] in vargs
node_inds_lookup = {j: i for i, j in enumerate(node_inds)} # given index in vargs, gives the index in nargs
def f(*fnargs): # wrapper of the unlifted func, only given non-node positional arguments that are intended to be lifted to node types. fnargs has the same structure as nargs
# here reconstruct fargs and fkwargs from fnargs and the non-node type args/kwargs
fargs = [(fnargs[node_inds_lookup[i]] if isinstance(v, CausalNode) else args[i]) for i, v in enumerate(args)] # replaces the nodes in args by the corresponding values in fnargs
fkwargs = {n: (fnargs[node_inds_lookup[i+n_args]] if isinstance(kwargs[n], CausalNode) else kwargs[n]) for i, n in enumerate(names)} # replaces the nodes in fwargs by the corresponding values in fnargs
return func(*fargs, **fkwargs)
y = CausalNode()
y.setCause(f, nargs)
return y
return liftedFunc
@lift
def identity(x):
return x
@lift
def toInt(x):
return round(x)
@lift
def bound(x, floor=-np.inf, ceil=np.inf):
if floor > ceil:
raise ValueError('floor has to be less than or equal to ceil.')
if x<floor:
return floor
elif x<ceil:
return x
else:
return ceil
@lift
def sum(*args):
total = 0
for a in args:
total += a
return total
@lift
def normal(mean, stdev):
return np.random.normal(mean, stdev)