This repository has been archived by the owner on Aug 21, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkeypoint_cnn.py
1072 lines (800 loc) · 48.1 KB
/
keypoint_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""Keypoint-cnn.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1dn1zYmIHgRBLO6t3b61beZafkxgnwn2w
Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters
---
**Assistant Professor :**
* Dr. Fadaeieslam
**By :**
* Amir Shokri
* Farshad Asgharzade
* Alireza Gholamnia
**Emails :**
"""
from google.colab import drive
drive.mount('/content/drive')
import drive.MyDrive.keypoint
import drive.MyDrive.keypoint.keyNet
!pip install tensorflow==1.14
!pip install ipykernel
pip install --user gast==0.2.2
!wget http://icvl.ee.ic.ac.uk/vbalnt/hpatches/hpatches-sequences-release.tar.gz
!tar -xvf '/content/hpatches-sequences-release.tar.gz' -C '/content/'
"""**train_network.py**"""
import os, argparse, math, cv2, sys, time
import numpy as np
from tqdm import tqdm
import tensorflow as tf
from drive.MyDrive.keypoint.keyNet.model.keynet_architecture import keynet
from drive.MyDrive.keypoint.keyNet.loss.score_loss_function import msip_loss_function
import drive.MyDrive.keypoint.keyNet.aux.tools as aux
import drive.MyDrive.keypoint.HSequences_bench.tools.geometry_tools as geo_tools
import drive.MyDrive.keypoint.HSequences_bench.tools.repeatability_tools as rep_tools
import drive.MyDrive.keypoint.keyNet
from drive.MyDrive.keypoint.keyNet.datasets.tf_dataset import tf_dataset as tf_dataset
from contextlib import contextmanager
from argparse import ArgumentParser
import skimage
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
@contextmanager
def suppress_stdout():
with open(os.devnull, "w") as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
def save_log(str, file):
print(str)
file.write(str+'\n')
file.flush()
try:
# python 3.4+ should use builtin unittest.mock not mock package
from unittest.mock import patch
except ImportError:
from mock import patch
def train_keynet_architecture():
parser = argparse.ArgumentParser(description='Train Key.Net Architecture')
parser.add_argument('--data-dir', type=str, default='drive/MyDrive/keypoint/keyNet/ImageNet',
help='The root path to the data from which the synthetic dataset will be created.')
parser.add_argument('--tfrecord-dir', type=str, default='keyNet/tfrecords',
help='The path to save the generated tfrecords.')
parser.add_argument('--weights-dir', type=str, default='keyNet/weights',
help='The path to save the Key.Net weights.')
parser.add_argument('--write-summary', type=bool, default=False,
help='Set to True if you desire to save the summary of the training.')
parser.add_argument('--network-version', type=str, default='KeyNet_default',
help='The Key.Net network version name')
parser.add_argument('--num-epochs', type=int, default=20,
help='Number of epochs for training.')
parser.add_argument('--epochs-val', type=int, default=5,
help='Set the number of training epochs between repeteability checks on the validation set.')
parser.add_argument('--batch-size', type=int, default=32,
help='The batch size for training.')
parser.add_argument('--init-initial-learning-rate', type=float, default=1e-3,
help='The init initial learning rate value.')
parser.add_argument('--weights-decay', type=float, default=1e-5,
help='The weight decay value.')
parser.add_argument('--num-epochs-before-decay', type=int, default=10,
help='The number of epochs before decay.')
parser.add_argument('--learning-rate-decay-factor', type=float, default=0.7,
help='The learning rate decay factor.')
parser.add_argument('--random-seed', type=int, default=12345,
help='The random seed value for TensorFlow and Numpy.')
parser.add_argument('--resume-training', type=bool, default=False,
help='Set True if resume training is desired.')
parser.add_argument('--num-filters', type=int, default=8,
help='The number of filters in each learnable block.')
parser.add_argument('--num-learnable-blocks', type=int, default=3,
help='The number of learnable blocks after handcrafted block.')
parser.add_argument('--num-levels-within-net', type=int, default=3,
help='The number of pyramid levels inside the architecture.')
parser.add_argument('--factor-scaling-pyramid', type=float, default=1.2,
help='The scale factor between the multi-scale pyramid levels in the architecture.')
parser.add_argument('--conv-kernel-size', type=int, default=5,
help='The size of the convolutional filters in each of the learnable blocks.')
parser.add_argument('--nms-size', type=int, default=15,
help='The NMS size for computing the validation repeatability.')
parser.add_argument('--border-size', type=int, default=15,
help='The number of pixels to remove from the borders to compute the repeatability.')
parser.add_argument('--max-angle', type=int, default=45,
help='The max angle value for generating a synthetic view to train Key.Net.')
parser.add_argument('--max-scale', type=int, default=2.0,
help='The max scale value for generating a synthetic view to train Key.Net.')
parser.add_argument('--max-shearing', type=int, default=0.8,
help='The max shearing value for generating a synthetic view to train Key.Net.')
parser.add_argument('--patch-size', type=int, default=192,
help='The patch size of the generated dataset.')
parser.add_argument('--weight-coordinates', type=bool, default=True,
help='Weighting coordinates by their scores.')
parser.add_argument('--is-debugging', type=bool, default=False,
help='Set variable to True if you desire to train network on a smaller dataset.')
parser.add_argument('--gpu-memory-fraction', type=float, default=0.9,
help='The fraction of GPU used by the script.')
parser.add_argument('--gpu-visible-devices', type=str, default="0",
help='Set CUDA_VISIBLE_DEVICES variable.')
#parser.parse_args(['--data-dir', '/path/to/ImageNet', '--tfrecord-dir', 'keyNet/tfrecords/' , '--weights-dir', 'keyNet/weights' , '--write-summary', False , '--network-version', 'KeyNet_default', '--num-epochs', 25 , '--epochs-val', 3 , '--batch-size', 32 , '--init-initial-learning-rate', 1e-3 , '--weights-decay', 1e-5 , '--num-epochs-before-decay', 10 , '--learning-rate-decay-factor', 0.7 , '--random-seed', 12345 , '--resume-training', False , '--num-filters', 8 , '--num-learnable-blocks', 3 , '--num-levels-within-net', 3 , '--factor-scaling-pyramid', 1.2 , '--conv-kernel-size', 5 , '--nms-size', 15 , '--border-size', 15 , '--max-angle', 45 , '--max-scale', 2 , '--max-shearing', 1 , '--patch-size', 192 , '--weight-coordinates', True , '--is-debugging', False , '--gpu-memory-fraction', 0.9 , '--gpu-visible-devices', "0"])
parser.parse_args(['--data-dir', 'drive/MyDrive/keypoint/keyNet/ImageNet'])
parser.parse_args(['--tfrecord-dir', 'keyNet/tfrecords/' ])
parser.parse_args(['--weights-dir', 'drive/MyDrive/keypoint/keyNet/weights/' ])
parser.parse_args(['--write-summary', False ])
parser.parse_args(['--network-version', 'KeyNet_default'])
parser.parse_args(['--num-epochs', '20' ])
parser.parse_args(['--epochs-val', '5' ])
parser.parse_args(['--batch-size', '32' ])
parser.parse_args(['--init-initial-learning-rate', '1e-3' ])
parser.parse_args(['--weights-decay', '1e-5' ])
parser.parse_args(['--num-epochs-before-decay', '10' ])
parser.parse_args(['--learning-rate-decay-factor', '0.7' ])
parser.parse_args(['--random-seed', '12345' ])
parser.parse_args(['--resume-training', 'False' ])
parser.parse_args(['--num-filters', '8' ])
parser.parse_args(['--num-learnable-blocks', '3' ])
parser.parse_args(['--num-levels-within-net', '3' ])
parser.parse_args(['--factor-scaling-pyramid', '1.2' ])
parser.parse_args(['--conv-kernel-size', '5' ])
parser.parse_args(['--nms-size', '15' ])
parser.parse_args(['--border-size', '15' ])
parser.parse_args(['--max-angle', '45' ])
parser.parse_args(['--max-scale', '2' ])
parser.parse_args(['--max-shearing', '1' ])
parser.parse_args(['--patch-size', '192' ])
parser.parse_args(['--weight-coordinates', 'True' ])
parser.parse_args(['--is-debugging', 'False' ])
parser.parse_args(['--gpu-memory-fraction', '0.9' ])
parser.parse_args(['--gpu-visible-devices', "0" ])
import sys
sys.argv=['']
del sys
args = parser.parse_args()
aux.check_directory('logs')
log_file = open('logs/'+args.network_version + ".txt", "w+")
# Set CUDA GPU environment
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_visible_devices
version_network_name = args.network_version
# Check directories
aux.check_directory('drive/MyDrive/keypoint/keyNet/data/')
aux.check_directory("drive/MyDrive/keypoint/" + args.weights_dir)
aux.check_directory("drive/MyDrive/keypoint/" + args.weights_dir + '/' + version_network_name)
aux.check_directory("drive/MyDrive/keypoint/" + args.weights_dir + '/' + version_network_name + '_best')
aux.check_directory("drive/MyDrive/keypoint/" + args.tfrecord_dir)
#aux.nll_check_tensorboard_directory()
# Set random seeds
tf.set_random_seed(args.random_seed)
np.random.seed(args.random_seed)
print('Start training Key.Net Architecture: ' + version_network_name)
def check_val_rep(num_points=25):
total_rep_avg = []
num_examples = dataset_class.get_num_patches(True)
fetches = [src_score_maps_activation, dst_score_maps_activation]
for _ in tqdm(range(num_examples)):
images_batch, images_dst_batch, h_src_2_dst_batch, h_dst_2_src_batch = sess.run(next_val_batch)
feed_dict = {
input_network_src: images_batch,
input_network_dst: images_dst_batch,
h_src_2_dst: h_src_2_dst_batch,
h_dst_2_src: h_dst_2_src_batch,
phase_train: False,
dimension_image: np.array(
[images_batch.shape[0], images_batch.shape[1], images_batch.shape[2]], dtype=np.int32),
dimension_image_dst: np.array(
[images_dst_batch.shape[0], images_dst_batch.shape[1], images_dst_batch.shape[2]], dtype=np.int32),
}
src_scores, dst_scores = sess.run(fetches, feed_dict=feed_dict)
# Apply NMS
src_scores = rep_tools.apply_nms(src_scores[0, :, :, 0], args.nms_size)
dst_scores = rep_tools.apply_nms(dst_scores[0, :, :, 0], args.nms_size)
hom = geo_tools.prepare_homography(h_dst_2_src_batch[0])
mask_src, mask_dst = geo_tools.create_common_region_masks(hom, images_batch[0].shape, images_dst_batch[0].shape)
src_scores = np.multiply(src_scores, mask_src)
dst_scores = np.multiply(dst_scores, mask_dst)
src_pts = geo_tools.get_point_coordinates(src_scores, num_points=num_points, order_coord='xysr')
dst_pts = geo_tools.get_point_coordinates(dst_scores, num_points=num_points, order_coord='xysr')
dst_to_src_pts = geo_tools.apply_homography_to_points(dst_pts, hom)
repeatability_results = rep_tools.compute_repeatability(src_pts, dst_to_src_pts)
total_rep_avg.append(repeatability_results['rep_single_scale'])
return np.asarray(total_rep_avg).mean()
def train_epoch():
total_loss_avg = []
num_examples = dataset_class.get_num_patches()
for step in tqdm(range(int(math.ceil(num_examples / args.batch_size))+1)):
images_batch, images_dst_batch, h_src_2_dst_batch, h_dst_2_src_batch = sess.run(next_batch)
feed_dict = {
input_network_src: images_batch,
input_network_dst: images_dst_batch,
input_border_mask: aux.remove_borders(np.ones_like(images_batch), 16),
h_src_2_dst: h_src_2_dst_batch,
h_dst_2_src: h_dst_2_src_batch,
phase_train: True,
dimension_image: np.array([images_batch.shape[0], images_batch.shape[1], images_batch.shape[2]], dtype=np.int32),
dimension_image_dst: np.array([images_dst_batch.shape[0], images_dst_batch.shape[1], images_dst_batch.shape[2]],dtype=np.int32),
}
fetches = [train_op, loss_net, global_step, merged_summary]
_, loss, global_step_count, summary = sess.run(fetches, feed_dict=feed_dict)
if args.write_summary:
train_writer.add_summary(summary, global_step_count)
total_loss_avg.append(loss)
if step % 50 == 0:
feed_dict = {
input_network_src: np.reshape(images_batch[0, :, :, :], (1, images_batch.shape[1], images_batch.shape[2], images_batch.shape[3])),
input_network_dst: np.reshape(images_dst_batch[0, :, :, :], (1, images_dst_batch.shape[1], images_dst_batch.shape[2], images_dst_batch.shape[3])),
phase_train: False,
dimension_image: np.array([1, images_batch.shape[1], images_batch.shape[2]],dtype=np.int32),
dimension_image_dst: np.array([1, images_dst_batch.shape[1], images_dst_batch.shape[2]],dtype=np.int32),
}
fetches = [src_score_maps_activation, dst_score_maps_activation]
deep_src, deep_dst = sess.run(fetches, feed_dict=feed_dict)
deep_src = aux.remove_borders(deep_src, 16)
deep_dst = aux.remove_borders(deep_dst, 16)
cv2.imwrite('drive/MyDrive/keypoint/keyNet/data/image_dst_' + version_network_name + '.png', 255 * images_dst_batch[0,:,:,0])
cv2.imwrite('drive/MyDrive/keypoint/keyNet/data/KeyNet_dst_' + version_network_name + '.png', 255 * deep_dst[0,:,:, 0] / deep_dst[0,:,:,0].max())
cv2.imwrite('drive/MyDrive/keypoint/keyNet/data/image_src_' + version_network_name + '.png', 255 * images_batch[0,:,:,0])
cv2.imwrite('drive/MyDrive/keypoint/keyNet/data/KeyNet_src_' + version_network_name + '.png', 255 * deep_src[0,:,:, 0] / deep_src[0,:,:, 0].max())
return np.asarray(total_loss_avg).mean()
with tf.Graph().as_default():
with tf.name_scope('inputs'):
# Define the input tensor shape
tensor_input_shape = (None, None, None, 1)
tensor_homography_shape = (None, 8)
# Define Placeholders
input_network_src = tf.placeholder(dtype=tf.float32, shape=tensor_input_shape, name='input_network_src')
input_network_dst = tf.placeholder(dtype=tf.float32, shape=tensor_input_shape, name='input_network_dst')
input_border_mask = tf.placeholder(dtype=tf.float32, shape=tensor_input_shape, name='input_border_mask')
h_src_2_dst = tf.placeholder(dtype=tf.float32, shape=tensor_homography_shape, name='H_scr_2_dst')
h_dst_2_src = tf.placeholder(dtype=tf.float32, shape=tensor_homography_shape, name='H_dst_2_src')
dimension_image = tf.placeholder(dtype=tf.int32, shape=(3,), name='dimension_image')
dimension_image_dst = tf.placeholder(dtype=tf.int32, shape=(3,), name='dimension_image_dst')
phase_train = tf.placeholder(tf.bool, name='phase_train')
with tf.name_scope('model_deep_detector'):
MSIP_sizes = [8, 16, 24, 32, 40]
MSIP_factor_loss = [256.0, 64.0, 16.0, 4.0, 1.0]
deep_architecture = keynet(args, MSIP_sizes)
src_score_maps = deep_architecture.model(input_network_src, phase_train, dimension_image, reuse=False)
dst_score_maps = deep_architecture.model(input_network_dst, phase_train, dimension_image_dst, reuse=True)
kernels = deep_architecture.get_kernels()
# Create Dataset
dataset_class = tf_dataset(args.data_dir, "drive/MyDrive/keypoint/" + args.tfrecord_dir, 32, args.batch_size,
args.max_angle, args.max_scale, args.max_shearing, args.random_seed, args.is_debugging)
train_dataset = dataset_class.create_dataset_object()
dataset_it = train_dataset.make_one_shot_iterator()
next_batch = dataset_it.get_next()
val_dataset = dataset_class.create_dataset_object(is_val=True)
dataset_val_it = val_dataset.make_one_shot_iterator()
next_val_batch = dataset_val_it.get_next()
# Learning Settings
num_batches_per_epoch = dataset_class.get_num_patches() / args.batch_size
num_steps_per_epoch = num_batches_per_epoch # Because one step is one batch processed
decay_steps = int(args.num_epochs_before_decay * num_steps_per_epoch)
global_step = tf.train.get_or_create_global_step()
lr = tf.train.exponential_decay(
learning_rate = args.init_initial_learning_rate,
global_step = global_step,
decay_steps = decay_steps,
decay_rate = args.learning_rate_decay_factor,
staircase = True)
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
src_score_maps_activation = src_score_maps['output']
dst_score_maps_activation = dst_score_maps['output']
# Loss Function
MSIP_elements = {}
loss_net = 0.0
for MSIP_idx in range(len(MSIP_sizes)):
MSIP_loss, loss_elements = msip_loss_function(input_network_src, src_score_maps, dst_score_maps,
MSIP_sizes[MSIP_idx], kernels, h_src_2_dst, h_dst_2_src,
args.weight_coordinates, 32, input_border_mask)
MSIP_level_name = "MSIP_ws_{}".format(MSIP_sizes[MSIP_idx])
MSIP_elements[MSIP_level_name] = loss_elements
tf.summary.scalar(MSIP_level_name, MSIP_loss)
tf.losses.add_loss(MSIP_factor_loss[MSIP_idx] * MSIP_loss)
loss_net += MSIP_factor_loss[MSIP_idx] * MSIP_loss
total_loss = tf.losses.get_total_loss(add_regularization_losses=False)
train_op = tf.contrib.training.create_train_op(total_loss, optimizer)
merged_summary = tf.summary.merge_all()
# Restore Variables
if args.resume_training:
checkpoint_file_path = os.path.join(args.weights_dir, version_network_name)
variables_to_restore = tf.contrib.framework.get_variables_to_restore()
if os.listdir(checkpoint_file_path):
init_assign_op, init_feed_dict = tf.contrib.framework.assign_from_checkpoint(
tf.train.latest_checkpoint(checkpoint_file_path), variables_to_restore)
# GPU Usage
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = args.gpu_memory_fraction
with tf.Session(config=config) as sess:
count = 0
max_counts = 3
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver_best = tf.train.Saver()
if args.write_summary:
train_writer = tf.summary.FileWriter('drive/MyDrive/keypoint/keyNet/logs_network/' + version_network_name + '/train ', sess.graph)
if args.resume_training and os.listdir(checkpoint_file_path):
sess.run(init_assign_op, init_feed_dict)
keynet_rep_best = check_val_rep()
else:
keynet_rep_best = 0.0
print('Start training . . .')
for epoch in range(0, args.num_epochs):
start_time = time.time()
loss = train_epoch()
aux.check_directory("drive/MyDrive/keypoint/" + args.weights_dir + '/' + version_network_name + '/')
saver.save(sess, "drive/MyDrive/keypoint/" + args.weights_dir + '/' + version_network_name + '/model-', global_step)
if epoch % args.epochs_val == 0:
with suppress_stdout():
keynet_rep_val = check_val_rep()
save_log('\nRepeatability Validation: {:.3f}.'.format(keynet_rep_val), log_file)
else:
keynet_rep_val = 0
# Control the early stopping
if epoch == 0:
loss_best = loss
else:
if keynet_rep_best < keynet_rep_val:
keynet_rep_best = keynet_rep_val
saver_best.save(sess, "drive/MyDrive/keypoint/" + args.weights_dir + '/' + version_network_name + '_best' + '/model-', global_step)
count = 0
elif keynet_rep_val > 0:
if loss_best > loss:
loss_best = loss
else:
count += 1
time_elapsed = time.time() - start_time
save_log('\nEpoch ' + str(epoch) + '. Loss: ' + str(loss) + '. Time per epoch: ' + str(time_elapsed), log_file)
if keynet_rep_val > 0:
print('Repeatability Val: {:.3f}\n'.format(keynet_rep_val))
else:
print('')
if count > max_counts:
break
save_log('\nRepeatability Val: {:.3f}. Best iteration'.format(keynet_rep_best), log_file)
log_file.close()
print('End training')
"""**extract_multiscale_features.py**"""
import os, sys, cv2
from os import path, mkdir
import argparse
import drive.MyDrive.keypoint.keyNet.aux.tools as aux
from skimage.transform import pyramid_gaussian
import drive.MyDrive.keypoint.HSequences_bench.tools.geometry_tools as geo_tools
import drive.MyDrive.keypoint.HSequences_bench.tools.repeatability_tools as rep_tools
from drive.MyDrive.keypoint.keyNet.model.keynet_architecture import *
import drive.MyDrive.keypoint.keyNet.aux.desc_aux_function as loss_desc
from drive.MyDrive.keypoint.keyNet.model.hardnet_pytorch import *
from drive.MyDrive.keypoint.keyNet.datasets.dataset_utils import read_bw_image
import torch
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def check_directory(dir):
if not path.isdir(dir):
mkdir(dir)
def create_result_dir(path):
directories = path.split('/')
tmp = ''
for idx, dir in enumerate(directories):
tmp += (dir + '/')
if idx == len(directories)-1:
continue
check_directory(tmp)
def extract_multiscale_features():
parser = argparse.ArgumentParser(description='HSequences Extract Features')
parser.add_argument('--list-images', type=str, default='drive/MyDrive/keypoint/test_im/image.txt', help='File containing the image paths for extracting features.')
parser.parse_args(['--list-images', 'drive/MyDrive/keypoint/test_im/image.txt'])
parser.add_argument('--results-dir', type=str, default='extracted_features/',
help='The output path to save the extracted keypoint.')
parser.add_argument('--network-version', type=str, default='KeyNet_default',
help='The Key.Net network version name')
parser.add_argument('--checkpoint-det-dir', type=str, default='keyNet/pretrained_nets/KeyNet_default',
help='The path to the checkpoint file to load the detector weights.')
parser.add_argument('--pytorch-hardnet-dir', type=str, default='keyNet/pretrained_nets/HardNet++.pth',
help='The path to the checkpoint file to load the HardNet descriptor weights.')
# Detector Settings
parser.add_argument('--num-filters', type=int, default=8,
help='The number of filters in each learnable block.')
parser.add_argument('--num-learnable-blocks', type=int, default=3,
help='The number of learnable blocks after handcrafted block.')
parser.add_argument('--num-levels-within-net', type=int, default=3,
help='The number of pyramid levels inside the architecture.')
parser.add_argument('--factor-scaling-pyramid', type=float, default=1.2,
help='The scale factor between the multi-scale pyramid levels in the architecture.')
parser.add_argument('--conv-kernel-size', type=int, default=5,
help='The size of the convolutional filters in each of the learnable blocks.')
# Multi-Scale Extractor Settings
parser.add_argument('--extract-MS', type=bool, default=True,
help='Set to True if you want to extract multi-scale features.')
parser.add_argument('--num-points', type=int, default=1500,
help='The number of desired features to extract.')
parser.add_argument('--nms-size', type=int, default=15,
help='The NMS size for computing the validation repeatability.')
parser.add_argument('--border-size', type=int, default=15,
help='The number of pixels to remove from the borders to compute the repeatability.')
parser.add_argument('--order-coord', type=str, default='xysr',
help='The coordinate order that follows the extracted points. Use yxsr or xysr.')
parser.add_argument('--random-seed', type=int, default=12345,
help='The random seed value for TensorFlow and Numpy.')
parser.add_argument('--pyramid_levels', type=int, default=5,
help='The number of downsample levels in the pyramid.')
parser.add_argument('--upsampled-levels', type=int, default=1,
help='The number of upsample levels in the pyramid.')
parser.add_argument('--scale-factor-levels', type=float, default=1.41,
help='The scale factor between the pyramid levels.')
parser.add_argument('--scale-factor', type=float, default=2.,
help='The scale factor to extract patches before descriptor.')
# GPU Settings
parser.add_argument('--gpu-memory-fraction', type=float, default=0.9,
help='The fraction of GPU used by the script.')
parser.add_argument('--gpu-visible-devices', type=str, default="0",
help='Set CUDA_VISIBLE_DEVICES variable.')
parser.parse_args(['--results-dir', 'drive/MyDrive/keypoint/test_im/'])
parser.parse_args(['--network-version', 'KeyNet_default'])
parser.parse_args(['--checkpoint-det-dir', 'keyNet/pretrained_nets/KeyNet_default'])
parser.parse_args(['--pytorch-hardnet-dir', 'keyNet/pretrained_nets/HardNet++.pth'])
parser.parse_args(['--num-filters', '8'])
parser.parse_args(['--num-learnable-blocks', '3'])
parser.parse_args(['--num-levels-within-net', '3'])
parser.parse_args(['--factor-scaling-pyramid', '1.2'])
parser.parse_args(['--conv-kernel-size', '5'])
parser.parse_args(['--extract-MS', 'True'])
parser.parse_args(['--num-points', '1500'])
parser.parse_args(['--nms-size', '15'])
parser.parse_args(['--border-size', '15'])
parser.parse_args(['--order-coord', 'xysr'])
parser.parse_args(['--random-seed', '12345'])
parser.parse_args(['--pyramid_levels', '5'])
parser.parse_args(['--upsampled-levels', '1'])
parser.parse_args(['--scale-factor-levels', '1.41'])
parser.parse_args(['--scale-factor', '2.'])
parser.parse_args(['--gpu-memory-fraction', '0.9'])
parser.parse_args(['--gpu-visible-devices', '0'])
args = parser.parse_known_args()[0]
# remove verbose bits from tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.logging.set_verbosity(tf.logging.ERROR)
# Set CUDA GPU environment
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_visible_devices
version_network_name = args.network_version
if not args.extract_MS:
args.pyramid_levels = 0
args.upsampled_levels = 0
print('Extract features for : ' + version_network_name)
aux.check_directory(args.results_dir)
aux.check_directory(os.path.join(args.results_dir, version_network_name))
def extract_features(image):
pyramid = pyramid_gaussian(image, max_layer=args.pyramid_levels, downscale=args.scale_factor_levels)
score_maps = {}
for (j, resized) in enumerate(pyramid):
im = resized.reshape(1, resized.shape[0], resized.shape[1], 1)
feed_dict = {
input_network: im,
phase_train: False,
dimension_image: np.array([1, im.shape[1], im.shape[2]], dtype=np.int32),
}
im_scores = sess.run(maps, feed_dict=feed_dict)
im_scores = geo_tools.remove_borders(im_scores, borders=args.border_size)
score_maps['map_' + str(j + 1 + args.upsampled_levels)] = im_scores[0, :, :, 0]
if args.upsampled_levels:
for j in range(args.upsampled_levels):
factor = args.scale_factor_levels ** (args.upsampled_levels - j)
up_image = cv2.resize(image, (0, 0), fx=factor, fy=factor)
im = np.reshape(up_image, (1, up_image.shape[0], up_image.shape[1], 1))
feed_dict = {
input_network: im,
phase_train: False,
dimension_image: np.array([1, im.shape[1], im.shape[2]], dtype=np.int32),
}
im_scores = sess.run(maps, feed_dict=feed_dict)
im_scores = geo_tools.remove_borders(im_scores, borders=args.border_size)
score_maps['map_' + str(j + 1)] = im_scores[0, :, :, 0]
im_pts = []
for idx_level in range(levels):
scale_value = (args.scale_factor_levels ** (idx_level - args.upsampled_levels))
scale_factor = 1. / scale_value
h_scale = np.asarray([[scale_factor, 0., 0.], [0., scale_factor, 0.], [0., 0., 1.]])
h_scale_inv = np.linalg.inv(h_scale)
h_scale_inv = h_scale_inv / h_scale_inv[2, 2]
num_points_level = point_level[idx_level]
if idx_level > 0:
res_points = int(np.asarray([point_level[a] for a in range(0, idx_level + 1)]).sum() - len(im_pts))
num_points_level = res_points
im_scores = rep_tools.apply_nms(score_maps['map_' + str(idx_level + 1)], args.nms_size)
im_pts_tmp = geo_tools.get_point_coordinates(im_scores, num_points=num_points_level, order_coord='xysr')
im_pts_tmp = geo_tools.apply_homography_to_points(im_pts_tmp, h_scale_inv)
if not idx_level:
im_pts = im_pts_tmp
else:
im_pts = np.concatenate((im_pts, im_pts_tmp), axis=0)
if args.order_coord == 'yxsr':
im_pts = np.asarray(list(map(lambda x: [x[1], x[0], x[2], x[3]], im_pts)))
im_pts = im_pts[(-1 * im_pts[:, 3]).argsort()]
im_pts = im_pts[:args.num_points]
# Extract descriptor from features
descriptors = []
im = image.reshape(1, image.shape[0], image.shape[1], 1)
for idx_desc_batch in range(int(len(im_pts) / 250 + 1)):
points_batch = im_pts[idx_desc_batch * 250: (idx_desc_batch + 1) * 250]
if not len(points_batch):
break
feed_dict = {
input_network: im,
phase_train: False,
kpts_coord: points_batch[:, :2],
kpts_scale: args.scale_factor * points_batch[:, 2],
kpts_batch: np.zeros(len(points_batch)),
dimension_image: np.array([1, im.shape[1], im.shape[2]], dtype=np.int32),
}
patch_batch = sess.run(input_patches, feed_dict=feed_dict)
patch_batch = np.reshape(patch_batch, (patch_batch.shape[0], 1, 32, 32))
data_a = torch.from_numpy(patch_batch)
data_a = data_a.cuda()
data_a = Variable(data_a)
with torch.no_grad():
out_a = model(data_a)
desc_batch = out_a.data.cpu().numpy().reshape(-1, 128)
if idx_desc_batch == 0:
descriptors = desc_batch
else:
descriptors = np.concatenate([descriptors, desc_batch], axis=0)
return im_pts, descriptors
with tf.Graph().as_default():
tf.set_random_seed(args.random_seed)
with tf.name_scope('inputs'):
# Define the input tensor shape
tensor_input_shape = (None, None, None, 1)
input_network = tf.placeholder(dtype=tf.float32, shape=tensor_input_shape, name='input_network')
dimension_image = tf.placeholder(dtype=tf.int32, shape=(3,), name='dimension_image')
kpts_coord = tf.placeholder(dtype=tf.float32, shape=(None, 2), name='kpts_coord')
kpts_batch = tf.placeholder(dtype=tf.int32, shape=(None,), name='kpts_batch')
kpts_scale = tf.placeholder(dtype=tf.float32, name='kpts_scale')
phase_train = tf.placeholder(tf.bool, name='phase_train')
with tf.name_scope('model_deep_detector'):
deep_architecture = keynet(args)
output_network = deep_architecture.model(input_network, phase_train, dimension_image, reuse=False)
maps = tf.nn.relu(output_network['output'])
# Extract Patches from inputs:
input_patches = loss_desc.build_patch_extraction(kpts_coord, kpts_batch, input_network, kpts_scale=kpts_scale)
# Define Pytorch HardNet
model = HardNet()
checkpoint = torch.load(args.pytorch_hardnet_dir)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
model.cuda()
# Define variables
detect_var = [v for v in tf.trainable_variables(scope='model_deep_detector')]
if os.listdir(args.checkpoint_det_dir):
init_assign_op_det, init_feed_dict_det = tf.contrib.framework.assign_from_checkpoint(
tf.train.latest_checkpoint(args.checkpoint_det_dir), detect_var)
point_level = []
tmp = 0.0
factor_points = (args.scale_factor_levels ** 2)
levels = args.pyramid_levels + args.upsampled_levels + 1
for idx_level in range(levels):
tmp += factor_points ** (-1 * (idx_level - args.upsampled_levels))
point_level.append(args.num_points * factor_points ** (-1 * (idx_level - args.upsampled_levels)))
point_level = np.asarray(list(map(lambda x: int(x / tmp), point_level)))
# GPU Usage
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = args.gpu_memory_fraction
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
if os.listdir(args.checkpoint_det_dir):
sess.run(init_assign_op_det, init_feed_dict_det)
# read image and extract keypoints and descriptors
f = open(args.list_images, "r")
for path_to_image in f:
path = path_to_image.split('\n')[0]
if not os.path.exists(path):
print('[ERROR]: File {0} not found!'.format(path))
return
create_result_dir(os.path.join(args.results_dir, version_network_name, path))
im = read_bw_image(path)
im = im.astype(float) / im.max()
im_pts, descriptors = extract_features(im)
file_name = os.path.join(args.results_dir, version_network_name, path)+'.kpt'
np.save(file_name, im_pts)
file_name = os.path.join(args.results_dir, version_network_name, path)+'.dsc'
np.save(file_name, descriptors)
"""**hsequeces_bench.py**"""
import os
import argparse
import numpy as np
import pickle
from tqdm import tqdm
import drive.MyDrive.keypoint.HSequences_bench.tools.aux_tools as aux
import drive.MyDrive.keypoint.HSequences_bench.tools.geometry_tools as geo_tools
import drive.MyDrive.keypoint.HSequences_bench.tools.repeatability_tools as rep_tools
import drive.MyDrive.keypoint.HSequences_bench.tools.matching_tools as match_tools
from drive.MyDrive.keypoint.HSequences_bench.tools.HSequences_reader import HSequences_dataset
from drive.MyDrive.keypoint.HSequences_bench.tools.opencv_matcher import OpencvBruteForceMatcher
def hsequences_metrics():
parser = argparse.ArgumentParser(description='HSequences Compute Repeatability')
parser.add_argument('--data-dir', type=str, default='keypoint/hpatches-sequences-release/',
help='The root path to HSequences dataset.')
parser.add_argument('--results-bench-dir', type=str, default='drive/MyDrive/keypoint/HSequences_bench/results/',
help='The output path to save the results.')
parser.add_argument('--detector-name', type=str, default='KeyNet_default',
help='The name of the detector to compute metrics.')
parser.add_argument('--results-dir', type=str, default='drive/MyDrive/keypoint/extracted_features/',
help='The path to the extracted points.')
parser.add_argument('--split', type=str, default='view',
help='The name of the HPatches (HSequences) split. Use full, debug_view, debug_illum, view or illum.')
parser.add_argument('--split-path', type=str, default='/content/drive/MyDrive/keypoint/HSequences_bench/tools/splits.json',
help='The path to the split json file.')
parser.add_argument('--top-k-points', type=int, default=1000,
help='The number of top points to use for evaluation. Set to None to use all points')
parser.add_argument('--overlap', type=float, default=0.6,
help='The overlap threshold for a correspondence to be considered correct.')
parser.add_argument('--pixel-threshold', type=int, default=5,
help='The distance of pixels for a matching correspondence to be considered correct.')
parser.add_argument('--dst-to-src-evaluation', type=bool, default=True,
help='Order to apply homography to points. Use True for dst to src, False otherwise.')
parser.add_argument('--order-coord', type=str, default='xysr',
help='The coordinate order that follows the extracted points. Use either xysr or yxsr.')
parser.parse_args(['--data-dir', 'drive/MyDrive/keypoint/hpatches-sequences-release/'])
parser.parse_args(['--results-bench-dir', 'drive/MyDrive/keypoint/HSequences_bench/'])
parser.parse_args(['--detector-name', 'KeyNet_default'])
parser.parse_args(['--results-dir', 'drive/MyDrive/keypoint/xtracted_features/'])
parser.parse_args(['--split', 'view'])
parser.parse_args(['--split-path', '/content/drive/MyDrive/keypoint/HSequences_bench/tools/splits.json'])
parser.parse_args(['--top-k-points', '1000'])
parser.parse_args(['--overlap', '0.6'])
parser.parse_args(['--pixel-threshold', '5'])
parser.parse_args(['--dst-to-src-evaluation', 'True'])
parser.parse_args(['--order-coord', 'xysr'])
args = parser.parse_args()
print(args.detector_name + ': ' + args.split)
# create the dataloader
data_loader = HSequences_dataset(args.data_dir, args.split, args.split_path)
results = aux.create_overlapping_results(args.detector_name, args.overlap)
# matching method
matcher = OpencvBruteForceMatcher('l2')
count_seq = 0
# load data and compute the keypoints
for sample_id, sample_data in enumerate(data_loader.extract_hsequences()):
sequence = sample_data['sequence_name']
count_seq += 1
image_src = sample_data['im_src']
images_dst = sample_data['images_dst']
h_src_2_dst = sample_data['h_src_2_dst']
h_dst_2_src = sample_data['h_dst_2_src']
print('\nComputing ' + sequence + ' sequence {0} / {1} \n'.format(count_seq, len(data_loader.sequences)))
for idx_im in tqdm(range(len(images_dst))):
# create the mask to filter out the points outside of the common areas
mask_src, mask_dst = geo_tools.create_common_region_masks(h_dst_2_src[idx_im], image_src.shape, images_dst[idx_im].shape)
# compute the files paths
src_pts_filename = os.path.join(args.results_dir, args.detector_name,
'hpatches-sequences-release', '{}/1.ppm.kpt.npy'.format(sample_data['sequence_name']))
src_dsc_filename = os.path.join(args.results_dir, args.detector_name,
'hpatches-sequences-release', '{}/1.ppm.dsc.npy'.format(sample_data['sequence_name']))
dst_pts_filename = os.path.join(args.results_dir, args.detector_name,
'hpatches-sequences-release', '{}/{}.ppm.kpt.npy'.format(sample_data['sequence_name'], idx_im+2))
dst_dsc_filename = os.path.join(args.results_dir, args.detector_name,
'hpatches-sequences-release', '{}/{}.ppm.dsc.npy'.format(sample_data['sequence_name'], idx_im+2))
if not os.path.isfile(src_pts_filename):
print("Could not find the file: " + src_pts_filename)
return False
if not os.path.isfile(src_dsc_filename):
print("Could not find the file: " + src_dsc_filename)
return False
if not os.path.isfile(dst_pts_filename):
print("Could not find the file: " + dst_pts_filename)
return False
if not os.path.isfile(dst_dsc_filename):
print("Could not find the file: " + dst_dsc_filename)
return False
# load the points
src_pts = np.load(src_pts_filename)
src_dsc = np.load(src_dsc_filename)
dst_pts = np.load(dst_pts_filename)
dst_dsc = np.load(dst_dsc_filename)
if args.order_coord == 'xysr':
src_pts = np.asarray(list(map(lambda x: [x[1], x[0], x[2], x[3]], src_pts)))
dst_pts = np.asarray(list(map(lambda x: [x[1], x[0], x[2], x[3]], dst_pts)))
# Check Common Points
src_idx = rep_tools.check_common_points(src_pts, mask_src)
src_pts = src_pts[src_idx]
src_dsc = src_dsc[src_idx]
dst_idx = rep_tools.check_common_points(dst_pts, mask_dst)
dst_pts = dst_pts[dst_idx]
dst_dsc = dst_dsc[dst_idx]
# Select top K points
if args.top_k_points:
src_idx = rep_tools.select_top_k(src_pts, args.top_k_points)
src_pts = src_pts[src_idx]
src_dsc = src_dsc[src_idx]
dst_idx = rep_tools.select_top_k(dst_pts, args.top_k_points)
dst_pts = dst_pts[dst_idx]
dst_dsc = dst_dsc[dst_idx]
src_pts = np.asarray(list(map(lambda x: [x[1], x[0], x[2], x[3]], src_pts)))
dst_pts = np.asarray(list(map(lambda x: [x[1], x[0], x[2], x[3]], dst_pts)))
src_to_dst_pts = geo_tools.apply_homography_to_points(
src_pts, h_src_2_dst[idx_im])
dst_to_src_pts = geo_tools.apply_homography_to_points(
dst_pts, h_dst_2_src[idx_im])
if args.dst_to_src_evaluation:
points_src = src_pts
points_dst = dst_to_src_pts
else:
points_src = src_to_dst_pts
points_dst = dst_pts
# compute repeatability
repeatability_results = rep_tools.compute_repeatability(points_src, points_dst, overlap_err=1-args.overlap,
dist_match_thresh=args.pixel_threshold)
# match descriptors
matches = matcher.match(src_dsc, dst_dsc)
matches_np = aux.convert_opencv_matches_to_numpy(matches)
matches_inv = matcher.match(dst_dsc, src_dsc)
matches_inv_np = aux.convert_opencv_matches_to_numpy(matches_inv)
mask = matches_np[:, 0] == matches_inv_np[matches_np[:, 1], 1]
matches_np = matches_np[mask]
match_score, match_score_corr, num_matches = {}, {}, {}
# compute matching based on pixel distance
for th_i in range(1, 11):
match_score_i, match_score_corr_i, num_matches_i = match_tools.compute_matching_based_distance(points_src, points_dst, matches_np,
repeatability_results['total_num_points'],
pixel_threshold=th_i,