forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 1
/
myutils.py
208 lines (175 loc) · 6.78 KB
/
myutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
def batch_dot(x, y, axes=None):
"""Batchwise dot product.
# >>> x_batch = paddle.ones(shape=(32, 20, 1))
# >>> y_batch = paddle.ones(shape=(32, 30, 20))
# >>> xy_batch_dot = batch_dot(x_batch, y_batch, axes=(1, 2))
# >>> xy_batch_dot.shape
(32, 1, 30)
Shape inference:
Let `x`'s shape be `(100, 20)` and `y`'s shape be `(100, 30, 20)`.
If `axes` is (1, 2), to find the output shape of resultant tensor,
loop through each dimension in `x`'s shape and `y`'s shape:
* `x.shape[0]` : 100 : append to output shape
* `x.shape[1]` : 20 : do not append to output shape,
dimension 1 of `x` has been summed over. (`dot_axes[0]` = 1)
* `y.shape[0]` : 100 : do not append to output shape,
always ignore first dimension of `y`
* `y.shape[1]` : 30 : append to output shape
* `y.shape[2]` : 20 : do not append to output shape,
dimension 2 of `y` has been summed over. (`dot_axes[1]` = 2)
`output_shape` = `(100, 30)`
"""
x_shape = x.shape
y_shape = y.shape
x_ndim = len(x_shape)
y_ndim = len(y_shape)
if x_ndim < 2 or y_ndim < 2:
raise ValueError('Cannot do batch_dot on inputs '
'with rank < 2. '
'Received inputs with shapes ' + str(x_shape) +
' and ' + str(y_shape) + '.')
x_batch_size = x_shape[0]
y_batch_size = y_shape[0]
if x_batch_size is not None and y_batch_size is not None:
if x_batch_size != y_batch_size:
raise ValueError('Cannot do batch_dot on inputs '
'with different batch sizes. '
'Received inputs with shapes ' + str(x_shape) +
' and ' + str(y_shape) + '.')
if isinstance(axes, int):
axes = [axes, axes]
if axes is None:
if y_ndim == 2:
axes = [x_ndim - 1, y_ndim - 1]
else:
axes = [x_ndim - 1, y_ndim - 2]
if any(isinstance(a, (list, tuple)) for a in axes):
raise ValueError('Multiple target dimensions are not supported. ' +
'Expected: None, int, (int, int), ' + 'Provided: ' +
str(axes))
# if tuple, convert to list.
axes = list(axes)
# convert negative indices.
if axes[0] < 0:
axes[0] += x_ndim
if axes[1] < 0:
axes[1] += y_ndim
# sanity checks
if 0 in axes:
raise ValueError('Cannot perform batch_dot over axis 0. '
'If your inputs are not batched, '
'add a dummy batch dimension to your '
'inputs using K.expand_dims(x, 0)')
a0, a1 = axes
d1 = x_shape[a0]
d2 = y_shape[a1]
if d1 is not None and d2 is not None and d1 != d2:
raise ValueError('Cannot do batch_dot on inputs with shapes ' + str(
x_shape) + ' and ' + str(y_shape) + ' with axes=' + str(axes) +
'. x.shape[%d] != '
'y.shape[%d] (%d != %d).' % (axes[0], axes[1], d1, d2
))
# backup ndims. Need them later.
orig_x_ndim = x_ndim
orig_y_ndim = y_ndim
# if rank is 2, expand to 3.
if x_ndim == 2:
x = paddle.unsqueeze(x, 1)
a0 += 1
x_ndim += 1
if y_ndim == 2:
y = paddle.unsqueeze(y, 2)
y_ndim += 1
# bring x's dimension to be reduced to last axis.
if a0 != x_ndim - 1:
pattern = list(range(x_ndim))
for i in range(a0, x_ndim - 1):
pattern[i] = pattern[i + 1]
pattern[-1] = a0
x = paddle.transpose(x, pattern)
# bring y's dimension to be reduced to axis 1.
if a1 != 1:
pattern = list(range(y_ndim))
for i in range(a1, 1, -1):
pattern[i] = pattern[i - 1]
pattern[1] = a1
y = paddle.transpose(y, pattern)
# normalize both inputs to rank 3.
if x_ndim > 3:
# squash middle dimensions of x.
x_shape = x.shape
x_mid_dims = x_shape[1:-1]
x_squashed_shape = paddle.stack([x_shape[0], -1, x_shape[-1]])
x = paddle.reshape(x, x_squashed_shape)
x_squashed = True
else:
x_squashed = False
if y_ndim > 3:
# squash trailing dimensions of y.
y_shape = y.shape
y_trail_dims = y_shape[2:]
y_squashed_shape = paddle.stack([y_shape[0], y_shape[1], -1])
y = paddle.reshape(y, y_squashed_shape)
y_squashed = True
else:
y_squashed = False
result = paddle.matmul(x, y)
# if inputs were squashed, we have to reshape the matmul output.
output_shape = paddle.shape(result)
do_reshape = False
if x_squashed:
output_shape = paddle.concat(
[output_shape[:1], x_mid_dims, output_shape[-1:]], 0)
do_reshape = True
if y_squashed:
output_shape = paddle.concat([output_shape[:-1], y_trail_dims], 0)
do_reshape = True
if do_reshape:
result = paddle.reshape(result, output_shape)
# if the inputs were originally rank 2, we remove the added 1 dim.
if orig_x_ndim == 2:
result = paddle.squeeze(result, 1)
elif orig_y_ndim == 2:
result = paddle.squeeze(result, -1)
return result
if __name__ == '__main__':
import numpy as np
# x_batch = paddle.ones(shape=(32, 20, 1))
# y_batch = paddle.ones(shape=(32, 30, 20))
x_batch = np.array(
[[-1.0115546, -0.02948455, 0.871699],
[0.08505919, -0.849537, 0.43243495],
[0.87515765, 1.0287786, -0.8976419],
[1.6105489, 0.7082569, 0.12437075]],
dtype='float32')
y_batch = np.array(
[[-0.8520051, 0.47021824, 0.8739443],
[-1.1984695, -1.0846833, 0.630532],
[1.0684944, -1.504634, -0.23854674],
[-0.7199577, -0.47609442, -0.64525014]],
dtype='float32')
x_batch = paddle.to_tensor(x_batch)
y_batch = paddle.to_tensor(y_batch)
xy_batch_dot = batch_dot(x_batch, y_batch, axes=1)
print(xy_batch_dot)
"""
Tensor(shape=[4, 1], dtype=float32, place=CPUPlace, stop_gradient=True,
[[ 1.60980189],
[ 1.09220183],
[-0.39870456],
[-1.57697451]])
"""