-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
Copy pathinference_inpainting.py
91 lines (78 loc) · 4.26 KB
/
inference_inpainting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import cv2
import argparse
import glob
import torch
from torchvision.transforms.functional import normalize
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from basicsr.utils.misc import get_device
from basicsr.utils.registry import ARCH_REGISTRY
pretrain_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer_inpainting.pth'
if __name__ == '__main__':
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = get_device()
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_path', type=str, default='./inputs/masked_faces',
help='Input image or folder. Default: inputs/masked_faces')
parser.add_argument('-o', '--output_path', type=str, default=None,
help='Output folder. Default: results/<input_name>')
parser.add_argument('--suffix', type=str, default=None,
help='Suffix of the restored faces. Default: None')
args = parser.parse_args()
# ------------------------ input & output ------------------------
print('[NOTE] The input face images should be aligned and cropped to a resolution of 512x512.')
if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
input_img_list = [args.input_path]
result_root = f'results/test_inpainting_img'
else: # input img folder
if args.input_path.endswith('/'): # solve when path ends with /
args.input_path = args.input_path[:-1]
# scan all the jpg and png images
input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]')))
result_root = f'results/{os.path.basename(args.input_path)}'
if not args.output_path is None: # set output path
result_root = args.output_path
test_img_num = len(input_img_list)
# ------------------ set up CodeFormer restorer -------------------
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=512, n_head=8, n_layers=9,
connect_list=['32', '64', '128']).to(device)
# ckpt_path = 'weights/CodeFormer/codeformer.pth'
ckpt_path = load_file_from_url(url=pretrain_model_url,
model_dir='weights/CodeFormer', progress=True, file_name=None)
checkpoint = torch.load(ckpt_path)['params_ema']
net.load_state_dict(checkpoint)
net.eval()
# -------------------- start to processing ---------------------
for i, img_path in enumerate(input_img_list):
img_name = os.path.basename(img_path)
basename, ext = os.path.splitext(img_name)
print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
input_face = cv2.imread(img_path)
assert input_face.shape[:2] == (512, 512), 'Input resolution must be 512x512 for inpainting.'
# input_face = cv2.resize(input_face, (512, 512), interpolation=cv2.INTER_LINEAR)
input_face = img2tensor(input_face / 255., bgr2rgb=True, float32=True)
normalize(input_face, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
input_face = input_face.unsqueeze(0).to(device)
try:
with torch.no_grad():
mask = torch.zeros(512, 512)
m_ind = torch.sum(input_face[0], dim=0)
mask[m_ind==3] = 1.0
mask = mask.view(1, 1, 512, 512).to(device)
# w is fixed to 1, adain=False for inpainting
output_face = net(input_face, w=1, adain=False)[0]
output_face = (1-mask)*input_face + mask*output_face
save_face = tensor2img(output_face, rgb2bgr=True, min_max=(-1, 1))
del output_face
torch.cuda.empty_cache()
except Exception as error:
print(f'\tFailed inference for CodeFormer: {error}')
save_face = tensor2img(input_face, rgb2bgr=True, min_max=(-1, 1))
save_face = save_face.astype('uint8')
# save face
if args.suffix is not None:
basename = f'{basename}_{args.suffix}'
save_restore_path = os.path.join(result_root, f'{basename}.png')
imwrite(save_face, save_restore_path)
print(f'\nAll results are saved in {result_root}')