-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_distance_pmj_disc.py
95 lines (79 loc) · 3.42 KB
/
get_distance_pmj_disc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/env python
# -*- coding: utf-8
# Compute distance between PMJ and C2-C3 disc along centerline
#
# For usage, type: python get_distance_pmj_dics -h
# Authors: Sandrine Bédard
import argparse
import csv
from operator import sub
import numpy as np
import nibabel as nib
import os
NEAR_ZERO_THRESHOLD = 1e-6
def get_parser():
parser = argparse.ArgumentParser(
description="Compute distance between C2-C3 intervertebral disc and PMJ. Outputs .csv file with results. | Orientation needs to be RPI")
parser.add_argument('-centerline', required=True, type=str,
help="Input image.")
parser.add_argument('-disclabel', required=True, type=str,
help="Ouput image.")
parser.add_argument('-o', required=False, type=str,
default='pmj_disc_distance.csv',
help="Ouput csv filename.")
return parser
def save_Nifti1(data, original_image, filename):
empty_header = nib.Nifti1Header()
image = nib.Nifti1Image(data, original_image.affine, empty_header)
nib.save(image, filename)
def get_distance_from_pmj(centerline_points, z_index, px, py, pz):
"""
Compute distance from projected PMJ on centerline and cord centerline.
:param centerline_points: 3xn array: Centerline in continuous coordinate (float) for each slice in RPI orientation.
:param z_index: z index PMJ on the centerline.
:param px: x pixel size.
:param py: y pixel size.
:param pz: z pixel size.
:return: nd-array: distance from PMJ and corresponding indexes.
"""
length = 0
arr_length = [0]
for i in range(z_index, 0, -1):
distance = np.sqrt(((centerline_points[0, i] - centerline_points[0, i - 1]) * px) ** 2 +
((centerline_points[1, i] - centerline_points[1, i - 1]) * py) ** 2 +
((centerline_points[2, i] - centerline_points[2, i - 1]) * pz) ** 2)
length += distance
arr_length.append(length)
arr_length = arr_length[::-1]
arr_length = np.stack((arr_length, centerline_points[2][:z_index + 1]), axis=0)
return arr_length
def main():
parser = get_parser()
args = parser.parse_args()
disc_label = nib.load(args.disclabel)
dim = disc_label.header['pixdim']
px = dim[0]
py = dim[1]
pz = dim[2]
# Create an array with centerline coordinates
centerline = np.genfromtxt(args.centerline, delimiter=',')
# Get C2-C3 disc coordinate
c2_c3_disc = np.argwhere(disc_label.get_fdata() == 3)[0]
# Compute distance from PMJ of the centerline
arr_distance = get_distance_from_pmj(centerline, centerline[2].argmax(), px, py, pz)
# Get the index of centerline array of c2c3 disc
c2c3_index = np.abs(centerline[2] - c2_c3_disc[-1]).argmin() # centerline doesn't necessarly start at the index 0 if the segmentation is incomplete
distance_disc_pmj = arr_distance[:, c2c3_index][0]
subject = os.path.basename(args.disclabel).split('_')[0]
fname_out = args.o
if not os.path.isfile(fname_out):
with open(fname_out, 'w') as csvfile:
header = ['Subject', 'C2C3_distance_PMJ']
writer = csv.DictWriter(csvfile, fieldnames=header)
writer.writeheader()
with open(fname_out, 'a') as csvfile:
spamwriter = csv.writer(csvfile, delimiter=',')
line = [subject, distance_disc_pmj]
spamwriter.writerow(line)
if __name__ == '__main__':
main()