-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_data.sh
executable file
·357 lines (328 loc) · 17.3 KB
/
process_data.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#!/bin/bash
#
# Process data.
#
# Usage:
# ./process_data.sh <SUBJECT>
#
# Manual segmentations or labels should be located under:
# PATH_DATA/derivatives/labels/SUBJECT/<CONTRAST>/
#
# Authors: Alexandru Foias
# The following global variables are retrieved from the caller sct_run_batch
# but could be overwritten by uncommenting the lines below:
# PATH_DATA_PROCESSED="~/data_processed"
# PATH_RESULTS="~/results"
# PATH_LOG="~/log"
# PATH_QC="~/qc"
# Uncomment for full verbose
set -x
# Immediately exit if error
set -e -o pipefail
# Exit if user presses CTRL+C (Linux) or CMD+C (OSX)
trap "echo Caught Keyboard Interrupt within script. Exiting now.; exit" INT
# Retrieve input params
SUBJECT=$1
# get starting time:
start=`date +%s`
# FUNCTIONS
# ==============================================================================
# Check if manual label already exists. If it does, copy it locally. If it does
# not, perform labeling.
label_if_does_not_exist(){
local file="$1"
local file_seg="$2"
# Update global variable with segmentation file name
FILELABEL="${file}_labels"
FILELABELMANUAL="${PATH_DATA}/derivatives/labels/${SUBJECT}/anat/${FILELABEL}-manual.nii.gz"
echo "Looking for manual label: $FILELABELMANUAL"
if [[ -e $FILELABELMANUAL ]]; then
echo "Found! Using manual labels."
rsync -avzh $FILELABELMANUAL ${FILELABEL}.nii.gz
else
echo "Not found. Proceeding with automatic labeling."
# Generate labeled segmentation
sct_label_vertebrae -i ${file}.nii.gz -s ${file_seg}.nii.gz -c t1
# Create labels in the cord at C3 and C5 mid-vertebral levels
sct_label_utils -i ${file_seg}_labeled.nii.gz -vert-body 3,5 -o ${FILELABEL}.nii.gz
fi
}
# Check if manual segmentation already exists. If it does, copy it locally. If
# it does not, perform seg.
segment_if_does_not_exist(){
local file="$1"
local contrast="$2"
# Find contrast
if [[ $contrast == "dwi" ]]; then
folder_contrast="dwi"
else
folder_contrast="anat"
fi
# Update global variable with segmentation file name
FILESEG="${file}_seg"
FILESEGMANUAL="${PATH_DATA}/derivatives/labels/${SUBJECT}/${folder_contrast}/${FILESEG}-manual.nii.gz"
echo
echo "Looking for manual segmentation: $FILESEGMANUAL"
if [[ -e $FILESEGMANUAL ]]; then
echo "Found! Using manual segmentation."
rsync -avzh $FILESEGMANUAL ${FILESEG}.nii.gz
sct_qc -i ${file}.nii.gz -s ${FILESEG}.nii.gz -p sct_deepseg_sc -qc ${PATH_QC} -qc-subject ${SUBJECT}
else
echo "Not found. Proceeding with automatic segmentation."
# Segment spinal cord
sct_deepseg_sc -i ${file}.nii.gz -c $contrast -qc ${PATH_QC} -qc-subject ${SUBJECT}
fi
}
# Check if manual segmentation already exists. If it does, copy it locally. If
# it does not, perform seg.
segment_gm_if_does_not_exist(){
local file="$1"
local contrast="$2"
# Update global variable with segmentation file name
FILESEG="${file}_gmseg"
FILESEGMANUAL="${PATH_DATA}/derivatives/labels/${SUBJECT}/anat/${FILESEG}-manual.nii.gz"
echo "Looking for manual segmentation: $FILESEGMANUAL"
if [[ -e $FILESEGMANUAL ]]; then
echo "Found! Using manual segmentation."
rsync -avzh $FILESEGMANUAL ${FILESEG}.nii.gz
sct_qc -i ${file}.nii.gz -s ${FILESEG}.nii.gz -p sct_deepseg_gm -qc ${PATH_QC} -qc-subject ${SUBJECT}
else
echo "Not found. Proceeding with automatic segmentation."
# Segment spinal cord
sct_deepseg_gm -i ${file}.nii.gz -qc ${PATH_QC} -qc-subject ${SUBJECT}
fi
}
# Select desired subjects
select_subject_data(){
arg1=$1
arg2=$2
CONTRAST_CONFIG="$(cat $PATH_DATA/include.yml | shyaml get-value subjects.$1.$2 '')"
# echo Please enter the path of the subjects yaml
# read path_subjects_yaml
}
# SCRIPT STARTS HERE
# ==============================================================================
# Display useful info for the log, such as SCT version, RAM and CPU cores available
sct_check_dependencies -short
# Go to folder where data will be copied and processed
cd $PATH_DATA_PROCESSED
# Copy list of participants in processed data folder
if [[ ! -f "participants.tsv" ]]; then
rsync -avzh $PATH_DATA/participants.tsv .
fi
# Copy list of participants in results folder (used by spine-generic scripts)
if [[ ! -f $PATH_RESULTS/"participants.tsv" ]]; then
rsync -avzh $PATH_DATA/participants.tsv $PATH_RESULTS/"participants.tsv"
fi
# Copy source images
rsync -avzh $PATH_DATA/$SUBJECT .
# Go to anat folder where all structural data are located
cd ${SUBJECT}/anat/
# T1w
# ------------------------------------------------------------------------------
CONTRAST="T1w"
select_subject_data $SUBJECT $CONTRAST
if [ -z "$CONTRAST_CONFIG" ]
then
file_t1="${SUBJECT}_$CONTRAST"
else
file_t1="${SUBJECT}_${CONTRAST_CONFIG}_$CONTRAST"
fi
# Reorient to RPI and resample to 1mm iso (supposed to be the effective resolution)
sct_image -i ${file_t1}.nii.gz -setorient RPI -o ${file_t1}_RPI.nii.gz
sct_resample -i ${file_t1}_RPI.nii.gz -mm 1x1x1 -o ${file_t1}_RPI_r.nii.gz
file_t1="${file_t1}_RPI_r"
# Segment spinal cord (only if it does not exist)
segment_if_does_not_exist $file_t1 "t1"
file_t1_seg=$FILESEG
# Create mid-vertebral levels in the cord (only if it does not exist)
label_if_does_not_exist ${file_t1} ${file_t1_seg}
file_label=$FILELABEL
# Register to PAM50 template
sct_register_to_template -i ${file_t1}.nii.gz -s ${file_t1_seg}.nii.gz -l ${file_label}.nii.gz -c t1 -param step=1,type=seg,algo=centermassrot:step=2,type=seg,algo=syn,slicewise=1,smooth=0,iter=5:step=3,type=im,algo=syn,slicewise=1,smooth=0,iter=3 -qc ${PATH_QC} -qc-subject ${SUBJECT}
# Rename warping fields for clarity
mv warp_template2anat.nii.gz warp_template2T1w.nii.gz
mv warp_anat2template.nii.gz warp_T1w2template.nii.gz
# Warp template without the white matter atlas (we don't need it at this point)
sct_warp_template -d ${file_t1}.nii.gz -w warp_template2T1w.nii.gz -a 0 -ofolder label_T1w
# Generate QC report to assess vertebral labeling
sct_qc -i ${file_t1}.nii.gz -s label_T1w/template/PAM50_levels.nii.gz -p sct_label_vertebrae -qc ${PATH_QC} -qc-subject ${SUBJECT}
# Flatten scan along R-L direction (to make nice figures)
sct_flatten_sagittal -i ${file_t1}.nii.gz -s ${file_t1_seg}.nii.gz
# Compute average cord CSA between C2 and C3
sct_process_segmentation -i ${file_t1_seg}.nii.gz -vert 2:3 -vertfile label_T1w/template/PAM50_levels.nii.gz -o ${PATH_RESULTS}/csa-SC_T1w.csv -append 1
# Unset variables
unset CONTRAST
unset CONTRAST_CONFIG
# T2
# ------------------------------------------------------------------------------
CONTRAST="T2w"
select_subject_data $SUBJECT $CONTRAST
if [ -z "$CONTRAST_CONFIG" ]
then
file_t2="${SUBJECT}_$CONTRAST"
else
file_t2="${SUBJECT}_${CONTRAST_CONFIG}_$CONTRAST"
fi
# Reorient to RPI and resample to 0.8mm iso (supposed to be the effective resolution)
sct_image -i ${file_t2}.nii.gz -setorient RPI -o ${file_t2}_RPI.nii.gz
sct_resample -i ${file_t2}_RPI.nii.gz -mm 0.8x0.8x0.8 -o ${file_t2}_RPI_r.nii.gz
file_t2="${file_t2}_RPI_r"
# Segment spinal cord (only if it does not exist)
segment_if_does_not_exist $file_t2 "t2"
file_t2_seg=$FILESEG
# Flatten scan along R-L direction (to make nice figures)
sct_flatten_sagittal -i ${file_t2}.nii.gz -s ${file_t2_seg}.nii.gz
# Bring vertebral level into T2 space
sct_register_multimodal -i label_T1w/template/PAM50_levels.nii.gz -d ${file_t2_seg}.nii.gz -o PAM50_levels2${file_t2}.nii.gz -identity 1 -x nn
# Compute average cord CSA between C2 and C3
sct_process_segmentation -i ${file_t2_seg}.nii.gz -vert 2:3 -vertfile PAM50_levels2${file_t2}.nii.gz -o ${PATH_RESULTS}/csa-SC_T2w.csv -append 1
# Unset variables
unset CONTRAST
unset CONTRAST_CONFIG
# MTS
# ------------------------------------------------------------------------------
file_t1w="${SUBJECT}_acq-T1w_MTS"
file_mton="${SUBJECT}_acq-MTon_MTS"
file_mtoff="${SUBJECT}_acq-MToff_MTS"
if [[ -e "${file_t1w}.nii.gz" && -e "${file_mton}.nii.gz" && -e "${file_mtoff}.nii.gz" ]]; then
# Segment spinal cord (only if it does not exist)
segment_if_does_not_exist $file_t1w "t1"
file_t1w_seg=$FILESEG
# Create mask
sct_create_mask -i ${file_t1w}.nii.gz -p centerline,${file_t1w_seg}.nii.gz -size 35mm -o ${file_t1w}_mask.nii.gz
# Crop data for faster processing
sct_crop_image -i ${file_t1w}.nii.gz -m ${file_t1w}_mask.nii.gz -o ${file_t1w}_crop.nii.gz
file_t1w="${file_t1w}_crop"
# Register PD->T1w
# Tips: here we only use rigid transformation because both images have very similar sequence parameters. We don't want to use SyN/BSplineSyN to avoid introducing spurious deformations.
sct_register_multimodal -i ${file_mtoff}.nii.gz -d ${file_t1w}.nii.gz -dseg ${file_t1w_seg}.nii.gz -param step=1,type=im,algo=rigid,slicewise=1,metric=CC -x spline -qc ${PATH_QC} -qc-subject ${SUBJECT}
file_mtoff="${file_mtoff}_reg"
# Register MT->T1w
sct_register_multimodal -i ${file_mton}.nii.gz -d ${file_t1w}.nii.gz -dseg ${file_t1w_seg}.nii.gz -param step=1,type=im,algo=rigid,slicewise=1,metric=CC -x spline -qc ${PATH_QC} -qc-subject ${SUBJECT}
file_mton="${file_mton}_reg"
# Copy json files to match file basename (it will later be used by sct_compute_mtsat)
cp ${SUBJECT}_acq-T1w_MTS.json ${file_t1w}.json
cp ${SUBJECT}_acq-MToff_MTS.json ${file_mtoff}.json
cp ${SUBJECT}_acq-MTon_MTS.json ${file_mton}.json
# Register template->T1w_ax (using template-T1w as initial transformation)
sct_register_multimodal -i $SCT_DIR/data/PAM50/template/PAM50_t1.nii.gz -iseg $SCT_DIR/data/PAM50/template/PAM50_cord.nii.gz -d ${file_t1w}.nii.gz -dseg ${file_t1w_seg}.nii.gz -param step=1,type=seg,algo=slicereg,metric=MeanSquares,smooth=2:step=2,type=im,algo=syn,metric=CC,iter=5,gradStep=0.5 -initwarp warp_template2T1w.nii.gz -initwarpinv warp_T1w2template.nii.gz
# Rename warping field for clarity
mv warp_PAM50_t12${file_t1w}.nii.gz warp_template2axT1w.nii.gz
mv warp_${file_t1w}2PAM50_t1.nii.gz warp_axT1w2template.nii.gz
# Warp template
sct_warp_template -d ${file_t1w}.nii.gz -w warp_template2axT1w.nii.gz -ofolder label_axT1w -qc ${PATH_QC} -qc-subject ${SUBJECT}
# Compute MTR
sct_compute_mtr -mt0 ${file_mtoff}.nii.gz -mt1 ${file_mton}.nii.gz
# Compute MTsat
sct_compute_mtsat -mt ${file_mton}.nii.gz -pd ${file_mtoff}.nii.gz -t1 ${file_t1w}.nii.gz
# Extract MTR, MTsat and T1 in WM between C2 and C5 vertebral levels
sct_extract_metric -i mtr.nii.gz -f label_axT1w/atlas -l 51 -vert 2:5 -vertfile label_axT1w/template/PAM50_levels.nii.gz -o ${PATH_RESULTS}/MTR.csv -append 1
sct_extract_metric -i mtsat.nii.gz -f label_axT1w/atlas -l 51 -vert 2:5 -vertfile label_axT1w/template/PAM50_levels.nii.gz -o ${PATH_RESULTS}/MTsat.csv -append 1
sct_extract_metric -i t1map.nii.gz -f label_axT1w/atlas -l 51 -vert 2:5 -vertfile label_axT1w/template/PAM50_levels.nii.gz -o ${PATH_RESULTS}/T1.csv -append 1
#Compute MTR in dorsal columns
sct_extract_metric -i mtr.nii.gz -f label_axT1w/atlas -l 53 -vert 2:5 -vertfile label_axT1w/template/PAM50_levels.nii.gz -o ${PATH_RESULTS}/MTR_in_DC.csv -append 1
#Compute MTR in lateral corticospinal tracts
sct_extract_metric -i mtr.nii.gz -f label_axT1w/atlas -l 4,5 -vert 2:5 -vertfile label_axT1w/template/PAM50_levels.nii.gz -o ${PATH_RESULTS}/MTR_in_CST.csv -append 1
#Compute MTR in lateral reticulospinal tracts
sct_extract_metric -i mtr.nii.gz -f label_axT1w/atlas -l 10,11 -vert 2:5 -vertfile label_axT1w/template/PAM50_levels.nii.gz -o ${PATH_RESULTS}/MTR_in_RST.csv -append 1
else
echo "WARNING: MTS dataset is incomplete."
fi
# T2s
# ------------------------------------------------------------------------------
file_t2s="${SUBJECT}_T2star"
# Compute root-mean square across 4th dimension (if it exists), corresponding to all echoes in Philips scans.
sct_maths -i ${file_t2s}.nii.gz -rms t -o ${file_t2s}_rms.nii.gz
file_t2s="${file_t2s}_rms"
# Bring vertebral level into T2s space
sct_register_multimodal -i label_T1w/template/PAM50_levels.nii.gz -d ${file_t2s}.nii.gz -o PAM50_levels2${file_t2s}.nii.gz -identity 1 -x nn
# Segment gray matter (only if it does not exist)
segment_gm_if_does_not_exist $file_t2s "t2s"
file_t2s_seg=$FILESEG
# Compute the gray matter CSA between C3 and C4 levels
# NB: Here we set -no-angle 1 because we do not want angle correction: it is too
# unstable with GM seg, and t2s data were acquired orthogonal to the cord anyways.
sct_process_segmentation -i ${file_t2s_seg}.nii.gz -angle-corr 0 -vert 3:4 -vertfile PAM50_levels2${file_t2s}.nii.gz -o ${PATH_RESULTS}/csa-GM_T2s.csv -append 1
# DWI
# ------------------------------------------------------------------------------
file_dwi="${SUBJECT}_dwi"
cd ../dwi
file_bval=${file_dwi}.bval
file_bvec=${file_dwi}.bvec
# Separate b=0 and DW images
sct_dmri_separate_b0_and_dwi -i ${file_dwi}.nii.gz -bvec ${file_bvec}
# Get centerline
sct_get_centerline -i ${file_dwi}_dwi_mean.nii.gz -c dwi -qc ${PATH_QC} -qc-subject ${SUBJECT}
# Create mask to help motion correction and for faster processing
sct_create_mask -i ${file_dwi}_dwi_mean.nii.gz -p centerline,${file_dwi}_dwi_mean_centerline.nii.gz -size 30mm
# Motion correction
sct_dmri_moco -i ${file_dwi}.nii.gz -bvec ${file_dwi}.bvec -m mask_${file_dwi}_dwi_mean.nii.gz -x spline -param metric=CC
file_dwi=${file_dwi}_moco
file_dwi_mean=${file_dwi}_dwi_mean
# Segment spinal cord (only if it does not exist)
segment_if_does_not_exist ${file_dwi_mean} "dwi"
file_dwi_seg=$FILESEG
# Register template->dwi (using template-T1w as initial transformation)
sct_register_multimodal -i $SCT_DIR/data/PAM50/template/PAM50_t1.nii.gz -iseg $SCT_DIR/data/PAM50/template/PAM50_cord.nii.gz -d ${file_dwi_mean}.nii.gz -dseg ${file_dwi_seg}.nii.gz -param step=1,type=seg,algo=centermass:step=2,type=im,algo=syn,metric=CC,iter=5,gradStep=0.5 -initwarp ../anat/warp_template2T1w.nii.gz -initwarpinv ../anat/warp_T1w2template.nii.gz
# Rename warping field for clarity
mv warp_PAM50_t12${file_dwi_mean}.nii.gz warp_template2dwi.nii.gz
mv warp_${file_dwi_mean}2PAM50_t1.nii.gz warp_dwi2template.nii.gz
# Warp template
sct_warp_template -d ${file_dwi_mean}.nii.gz -w warp_template2dwi.nii.gz -qc ${PATH_QC} -qc-subject ${SUBJECT}
# Create mask around the spinal cord (for faster computing)
sct_maths -i ${file_dwi_seg}.nii.gz -dilate 1 -shape ball -o ${file_dwi_seg}_dil.nii.gz
# Compute DTI
sct_dmri_compute_dti -i ${file_dwi}.nii.gz -bvec ${file_bvec} -bval ${file_bval} -method standard -m ${file_dwi_seg}_dil.nii.gz
# Compute DTI metrics in WM between C2 and C5 vertebral levels
sct_extract_metric -i dti_FA.nii.gz -f label/atlas -l 51 -vert 2:5 -o ${PATH_RESULTS}/DWI_FA.csv -append 1
sct_extract_metric -i dti_MD.nii.gz -f label/atlas -l 51 -vert 2:5 -o ${PATH_RESULTS}/DWI_MD.csv -append 1
sct_extract_metric -i dti_RD.nii.gz -f label/atlas -l 51 -vert 2:5 -o ${PATH_RESULTS}/DWI_RD.csv -append 1
sct_extract_metric -i dti_AD.nii.gz -f label/atlas -l 51 -vert 2:5 -o ${PATH_RESULTS}/DWI_AD.csv -append 1
#Compute dti_FA in dorsal columns, lateral corticospinal tracts, lateral reticulospinal tracts
sct_extract_metric -i dti_FA.nii.gz -f label/atlas -l 53 -vert 2:5 -o ${PATH_RESULTS}/DWI_FA_in_DC.csv -append 1
sct_extract_metric -i dti_FA.nii.gz -f label/atlas -l 4,5 -vert 2:5 -o ${PATH_RESULTS}/DWI_FA_in_CST.csv -append 1
sct_extract_metric -i dti_FA.nii.gz -f label/atlas -l 10,11 -vert 2:5 -o ${PATH_RESULTS}/DWI_FA_in_RST.csv -append 1
#Compute dti_MD in dorsal columns, lateral corticospinal tracts, lateral reticulospinal tracts
sct_extract_metric -i dti_MD.nii.gz -f label/atlas -l 53 -vert 2:5 -o ${PATH_RESULTS}/DWI_MD_in_DC.csv -append 1
sct_extract_metric -i dti_MD.nii.gz -f label/atlas -l 4,5 -vert 2:5 -o ${PATH_RESULTS}/DWI_MD_in_CST.csv -append 1
sct_extract_metric -i dti_MD.nii.gz -f label/atlas -l 10,11 -vert 2:5 -o ${PATH_RESULTS}/DWI_MD_in_RST.csv -append 1
#Compute dti_RD in dorsal columns, lateral corticospinal tracts, lateral reticulospinal tracts
sct_extract_metric -i dti_RD.nii.gz -f label/atlas -l 53 -vert 2:5 -o ${PATH_RESULTS}/DWI_RD_in_DC.csv -append 1
sct_extract_metric -i dti_RD.nii.gz -f label/atlas -l 4,5 -vert 2:5 -o ${PATH_RESULTS}/DWI_RD_in_CST.csv -append 1
sct_extract_metric -i dti_RD.nii.gz -f label/atlas -l 10,11 -vert 2:5 -o ${PATH_RESULTS}/DWI_RD_in_RST.csv -append 1
#Compute dti_AD in dorsal columns, lateral corticospinal tracts, lateral reticulospinal tracts
sct_extract_metric -i dti_AD.nii.gz -f label/atlas -l 53 -vert 2:5 -o ${PATH_RESULTS}/DWI_AD_in_DC.csv -append 1
sct_extract_metric -i dti_AD.nii.gz -f label/atlas -l 4,5 -vert 2:5 -o ${PATH_RESULTS}/DWI_AD_in_CST.csv -append 1
sct_extract_metric -i dti_AD.nii.gz -f label/atlas -l 10,11 -vert 2:5 -o ${PATH_RESULTS}/DWI_AD_in_RST.csv -append 1
# Go back to parent folder
cd ..
# Verify presence of output files and write log file if error
# ------------------------------------------------------------------------------
FILES_TO_CHECK=(
"anat/${SUBJECT}_T1w_RPI_r_seg.nii.gz"
"anat/${SUBJECT}_T2w_RPI_r_seg.nii.gz"
"anat/label_axT1w/template/PAM50_levels.nii.gz"
"anat/mtr.nii.gz"
"anat/mtsat.nii.gz"
"anat/t1map.nii.gz"
"anat/${SUBJECT}_T2star_rms_gmseg.nii.gz"
"dwi/dti_FA.nii.gz"
"dwi/dti_MD.nii.gz"
"dwi/dti_RD.nii.gz"
"dwi/label/atlas/PAM50_atlas_00.nii.gz"
)
for file in ${FILES_TO_CHECK[@]}; do
if [[ ! -e $file ]]; then
echo "${SUBJECT}/${file} does not exist" >> $PATH_LOG/_error_check_output_files.log
fi
done
# Display useful info for the log
end=`date +%s`
runtime=$((end-start))
echo
echo "~~~"
echo "SCT version: `sct_version`"
echo "Ran on: `uname -nsr`"
echo "Duration: $(($runtime / 3600))hrs $((($runtime / 60) % 60))min $(($runtime % 60))sec"
echo "~~~"