diff --git a/.all-contributorsrc b/.all-contributorsrc
index 4f6f90c52b..9d4caf4356 100644
--- a/.all-contributorsrc
+++ b/.all-contributorsrc
@@ -501,6 +501,15 @@
"contributions": [
"maintenance"
]
+ },
+ {
+ "login": "nj-vs-vh",
+ "name": "Igor Vaiman",
+ "avatar_url": "https://avatars.githubusercontent.com/u/30616208?v=4",
+ "profile": "https://nj-vs-vh.name/",
+ "contributions": [
+ "code"
+ ]
}
],
"contributorsPerLine": 7,
diff --git a/README.md b/README.md
index e4ec709a8d..7cc935cc3e 100644
--- a/README.md
+++ b/README.md
@@ -232,6 +232,7 @@ Thanks especially to the gracious help of Awkward Array contributors (including
maxymnaumchyk 💻 |
Thomas A Caswell 🚧 |
Bas Nijholt 🚧 |
+ Igor Vaiman 💻 |
diff --git a/src/awkward/operations/ak_mean.py b/src/awkward/operations/ak_mean.py
index a9b38ce1f0..3b6552c521 100644
--- a/src/awkward/operations/ak_mean.py
+++ b/src/awkward/operations/ak_mean.py
@@ -225,8 +225,8 @@ def _impl(x, weight, axis, keepdims, mask_identity, highlevel, behavior, attrs):
sumw = ak.operations.ak_sum._impl(
x * 0 + weight,
axis,
- keepdims,
- mask_identity,
+ keepdims=True,
+ mask_identity=True,
highlevel=True,
behavior=ctx.behavior,
attrs=ctx.attrs,
diff --git a/tests/test_3285_ak_mean_weighted_row_wise.py b/tests/test_3285_ak_mean_weighted_row_wise.py
new file mode 100644
index 0000000000..2c1bc1db9b
--- /dev/null
+++ b/tests/test_3285_ak_mean_weighted_row_wise.py
@@ -0,0 +1,65 @@
+# BSD 3-Clause License; see https://github.com/scikit-hep/awkward/blob/main/LICENSE
+
+from __future__ import annotations
+
+import math
+
+import pytest
+
+import awkward as ak
+
+
+@pytest.mark.parametrize(
+ "keepdims, expected_result",
+ [
+ pytest.param(False, ak.Array([2.25, 6.5])),
+ pytest.param(True, ak.Array([[2.25], [6.5]])),
+ ],
+)
+def test_keepdims(keepdims: bool, expected_result: ak.Array):
+ data = ak.Array(
+ [
+ [1, 2, 3],
+ [4, 7],
+ ]
+ )
+ weight = ak.Array(
+ [
+ [1, 1, 2],
+ [1, 5],
+ ]
+ )
+ assert ak.all(
+ ak.mean(data, weight=weight, axis=1, keepdims=keepdims) == expected_result
+ )
+
+
+@pytest.mark.parametrize(
+ "mask_identity, expected_result",
+ [
+ pytest.param(False, ak.Array([1.5, math.nan, 8])),
+ pytest.param(True, ak.Array([1.5, None, 8])),
+ ],
+)
+def test_mask_identity(mask_identity: bool, expected_result: ak.Array):
+ data = ak.Array(
+ [
+ [1, 2],
+ [],
+ [6, 9],
+ ]
+ )
+ weight = ak.Array(
+ [
+ [1, 1],
+ [],
+ [1, 2],
+ ]
+ )
+ result = ak.mean(data, weight=weight, axis=1, mask_identity=mask_identity)
+ assert result[0] == expected_result[0]
+ if mask_identity:
+ assert result[1] is None
+ else:
+ assert math.isnan(result[1]) # NaN is not equal to itself per IEEE!
+ assert result[2] == expected_result[2]