-
Notifications
You must be signed in to change notification settings - Fork 8
/
traditionaldipfit.m
90 lines (81 loc) · 2.38 KB
/
traditionaldipfit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
function [H] = traditionaldipfit(f);
% TRADITIONALDIPFIT creates the homogenous spatial transformation matrix
% for a 9 parameter traditionaldipfit "Talairach-model" transformation
%
% H = traditionaldipfit(f)
%
% The transformation vector f should contain the
% x-shift
% y-shift
% z-shift
% (in length-units of the coordinate system used. For the MNI brain
% the unit is mm)
% followed by the
% pitch (rotation around x-axis)
% roll (rotation around y-axis)
% yaw (rotation around z-axis)
% (in radians)
% followed by the
% x-rescaling factor
% y-rescaling factor
% z-rescaling factor
% (in ratio = newscale/oldscale)
%
% H first applies scaling, then rotations, and finally the shifts.
%
% See also fieldtrip*/WARP3D.m
% Copyright (C) 2000-2004, Robert Oostenveld
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% compute the homogenous transformation matrix for the translation
if length(f) == 6, f(7:9) = 1; end;
T = eye(4,4);
if isa( f, 'sym')
T = sym(T);
end;
T(1,4) = f(1);
T(2,4) = f(2);
T(3,4) = f(3);
% precompute the sin/cos values of the angles
cX = cos(f(4));
cY = cos(f(5));
cZ = cos(f(6));
sX = sin(f(4));
sY = sin(f(5));
sZ = sin(f(6));
% compute the homogenous transformation matrix for the rotation
R = eye(4,4);
if isa( f, 'sym')
R = sym(R);
end;
R(1,1) = cZ*cY + sZ*sX*sY;
R(1,2) = sZ*cY + cZ*sX*sY;
R(1,3) = cX*sY;
R(2,1) = -sZ*cX;
R(2,2) = cZ*cX;
R(2,3) = sX;
R(3,1) = sZ*sX*cY - cZ*sY;
R(3,2) = -cZ*sX*cY - sZ*sY;
R(3,3) = cX*cY;
% compute the homogenous transformation matrix for the scaling
S = eye(4,4);
if isa( f, 'sym')
S = sym(S);
end;
S(1,1) = f(7);
S(2,2) = f(8);
S(3,3) = f(9);
% compute the homogenous coordinate transformation matrix for use by WARP3D
H = T*R*S;