forked from MKFMIKU/RAISR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
79 lines (58 loc) · 3.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python
import argparse, os
import numpy as np
from scipy import sparse, misc
from model.hashTable import hashTable
from tqdm import tqdm
from cgls import cgls
from utils import is_image_file, mod_crop
def main():
parser = argparse.ArgumentParser(description="RAISR")
parser.add_argument("--rate", type=int, default=3, help="upscale scale rate")
parser.add_argument("--patch", type=int, default=11, help="image patch size")
parser.add_argument("--Qangle", type=int, default=24, help="Training Qangle size")
parser.add_argument("--Qstrength", type=int, default=3, help="Training Qstrength size")
parser.add_argument("--Qcoherence", type=int, default=3, help="Training Qcoherence size")
parser.add_argument('--datasets', default='./datasets/291/', type=str, help='path save the train dataset')
opt = parser.parse_args()
print(opt)
rate = int(opt.rate)
patch_size = int(opt.patch)
images_path = [os.path.join(opt.datasets, x) for x in os.listdir(opt.datasets) if is_image_file(x)]
print("Load dataset ", len(images_path))
# Implement of Algorithm 1: Computing the hash-table keys.
Qangle = opt.Qangle
Qstrength = opt.Qstrength
Qcoherence = opt.Qcoherence
Q = np.zeros((Qangle, Qstrength, Qcoherence, rate*rate, patch_size*patch_size, patch_size*patch_size))
V = np.zeros((Qangle, Qstrength, Qcoherence, rate*rate, patch_size*patch_size, 1))
H = np.zeros((Qangle, Qstrength, Qcoherence, rate*rate, patch_size*patch_size))
for image_path in tqdm(images_path):
print("HashMap of %s" % image_path)
im = misc.imread(image_path, mode='YCbCr')
im_y = mod_crop(im[:, :, 0], rate)
h, w = im_y.shape
label = im_y
data = misc.imresize(label, (h // rate, w // rate), interp='bicubic')
for xP in range(0, data.shape[0] - data.shape[0]%patch_size, patch_size):
for yP in range(0, data.shape[1] - data.shape[1]%patch_size, patch_size):
im_patch = data[xP:xP+patch_size, yP:yP+patch_size]
[angle, strength, coherence] = hashTable(im_patch, Qangle, Qstrength, Qcoherence)
t = xP % rate * rate + yP % rate # Pixel type
X = label[xP, yP] # GT pixle
A = im_patch.reshape(1, -1)
Q[angle,strength,coherence,t] += A * A.T
V[angle,strength,coherence,t] += A.T * X
operationcount = 0
totaloperations = rate * rate * Qangle * Qstrength * Qcoherence
for t in range(0, rate*rate):
for angle in range(0, Qangle):
for strength in range(0, Qstrength):
for coherence in range(0, Qcoherence):
if round(operationcount*100/totaloperations) != round((operationcount+1)*100/totaloperations):
operationcount += 1
H[angle,strength,coherence,pixeltype] = cgls(Q[angle,strength,coherence,pixeltype], V[angle,strength,coherence,pixeltype])
np.save("./filters", H)
if __name__ == '__main__':
os.system('clear')
main()