-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathpc_metric.py
355 lines (280 loc) · 11.6 KB
/
pc_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import torch
import argparse
import os
import numpy as np
from tqdm import tqdm
import random
import warnings
from scipy.stats import entropy
from sklearn.neighbors import NearestNeighbors
from plyfile import PlyData
from pathlib import Path
import multiprocessing
from chamfer_distance import ChamferDistance
N_POINTS = 2000
def find_files(folder, extension):
return sorted([Path(os.path.join(folder, f)) for f in os.listdir(folder) if f.endswith(extension)])
def read_ply(path):
with open(path, 'rb') as f:
plydata = PlyData.read(f)
x = np.array(plydata['vertex']['x'])
y = np.array(plydata['vertex']['y'])
z = np.array(plydata['vertex']['z'])
vertex = np.stack([x, y, z], axis=1)
return vertex
def distChamfer(a, b):
x, y = a, b
bs, num_points, points_dim = x.size()
xx = torch.bmm(x, x.transpose(2, 1))
yy = torch.bmm(y, y.transpose(2, 1))
zz = torch.bmm(x, y.transpose(2, 1))
diag_ind = torch.arange(0, num_points).to(a).long()
rx = xx[:, diag_ind, diag_ind].unsqueeze(1).expand_as(xx)
ry = yy[:, diag_ind, diag_ind].unsqueeze(1).expand_as(yy)
P = (rx.transpose(2, 1) + ry - 2 * zz)
return P.min(1)[0], P.min(2)[0]
def _pairwise_CD(sample_pcs, ref_pcs, batch_size):
N_sample = sample_pcs.shape[0]
N_ref = ref_pcs.shape[0]
all_cd = []
all_emd = []
iterator = range(N_sample)
matched_gt = []
pbar = tqdm(iterator)
chamfer_dist = ChamferDistance()
for sample_b_start in pbar:
sample_batch = sample_pcs[sample_b_start]
cd_lst = []
emd_lst = []
for ref_b_start in range(0, N_ref, batch_size):
ref_b_end = min(N_ref, ref_b_start + batch_size)
ref_batch = ref_pcs[ref_b_start:ref_b_end]
batch_size_ref = ref_batch.size(0)
sample_batch_exp = sample_batch.view(1, -1, 3).expand(batch_size_ref, -1, -1)
sample_batch_exp = sample_batch_exp.contiguous()
dl, dr, idx1, idx2 = chamfer_dist(sample_batch_exp,ref_batch)
cd_lst.append((dl.mean(dim=1) + dr.mean(dim=1)).view(1, -1))
cd_lst = torch.cat(cd_lst, dim=1)
all_cd.append(cd_lst)
hit = np.argmin(cd_lst.detach().cpu().numpy()[0])
matched_gt.append(hit)
pbar.set_postfix({"cov": len(np.unique(matched_gt)) * 1.0 / N_ref})
all_cd = torch.cat(all_cd, dim=0) # N_sample, N_ref
return all_cd
def compute_cov_mmd(sample_pcs, ref_pcs, batch_size):
all_dist = _pairwise_CD(sample_pcs, ref_pcs, batch_size)
N_sample, N_ref = all_dist.size(0), all_dist.size(1)
min_val_fromsmp, min_idx = torch.min(all_dist, dim=1)
min_val, _ = torch.min(all_dist, dim=0)
mmd = min_val.mean()
cov = float(min_idx.unique().view(-1).size(0)) / float(N_ref)
cov = torch.tensor(cov).to(all_dist)
return {
'MMD-CD': mmd.item(),
'COV-CD': cov.item(),
}
def jsd_between_point_cloud_sets(sample_pcs, ref_pcs, in_unit_sphere, resolution=28):
'''Computes the JSD between two sets of point-clouds, as introduced in the paper ```Learning Representations And Generative Models For 3D Point Clouds```.
Args:
sample_pcs: (np.ndarray S1xR2x3) S1 point-clouds, each of R1 points.
ref_pcs: (np.ndarray S2xR2x3) S2 point-clouds, each of R2 points.
resolution: (int) grid-resolution. Affects granularity of measurements.
'''
sample_grid_var = entropy_of_occupancy_grid(sample_pcs, resolution, in_unit_sphere)[1]
ref_grid_var = entropy_of_occupancy_grid(ref_pcs, resolution, in_unit_sphere)[1]
return jensen_shannon_divergence(sample_grid_var, ref_grid_var)
def entropy_of_occupancy_grid(pclouds, grid_resolution, in_sphere=False):
'''Given a collection of point-clouds, estimate the entropy of the random variables
corresponding to occupancy-grid activation patterns.
Inputs:
pclouds: (numpy array) #point-clouds x points per point-cloud x 3
grid_resolution (int) size of occupancy grid that will be used.
'''
epsilon = 10e-4
bound = 1 + epsilon
if abs(np.max(pclouds)) > bound or abs(np.min(pclouds)) > bound:
print(abs(np.max(pclouds)), abs(np.min(pclouds)))
warnings.warn('Point-clouds are not in unit cube.')
if in_sphere and np.max(np.sqrt(np.sum(pclouds ** 2, axis=2))) > bound:
warnings.warn('Point-clouds are not in unit sphere.')
grid_coordinates, _ = unit_cube_grid_point_cloud(grid_resolution, in_sphere)
grid_coordinates = grid_coordinates.reshape(-1, 3)
grid_counters = np.zeros(len(grid_coordinates))
grid_bernoulli_rvars = np.zeros(len(grid_coordinates))
nn = NearestNeighbors(n_neighbors=1).fit(grid_coordinates)
for pc in pclouds:
_, indices = nn.kneighbors(pc)
indices = np.squeeze(indices)
for i in indices:
grid_counters[i] += 1
indices = np.unique(indices)
for i in indices:
grid_bernoulli_rvars[i] += 1
acc_entropy = 0.0
n = float(len(pclouds))
for g in grid_bernoulli_rvars:
p = 0.0
if g > 0:
p = float(g) / n
acc_entropy += entropy([p, 1.0 - p])
return acc_entropy / len(grid_counters), grid_counters
def unit_cube_grid_point_cloud(resolution, clip_sphere=False):
'''Returns the center coordinates of each cell of a 3D grid with resolution^3 cells,
that is placed in the unit-cube.
If clip_sphere it True it drops the "corner" cells that lie outside the unit-sphere.
'''
grid = np.ndarray((resolution, resolution, resolution, 3), np.float32)
spacing = 1.0 / float(resolution - 1) * 2
for i in range(resolution):
for j in range(resolution):
for k in range(resolution):
grid[i, j, k, 0] = i * spacing - 0.5 * 2
grid[i, j, k, 1] = j * spacing - 0.5 * 2
grid[i, j, k, 2] = k * spacing - 0.5 * 2
if clip_sphere:
grid = grid.reshape(-1, 3)
grid = grid[np.linalg.norm(grid, axis=1) <= 0.5]
return grid, spacing
def jensen_shannon_divergence(P, Q):
if np.any(P < 0) or np.any(Q < 0):
raise ValueError('Negative values.')
if len(P) != len(Q):
raise ValueError('Non equal size.')
P_ = P / np.sum(P) # Ensure probabilities.
Q_ = Q / np.sum(Q)
e1 = entropy(P_, base=2)
e2 = entropy(Q_, base=2)
e_sum = entropy((P_ + Q_) / 2.0, base=2)
res = e_sum - ((e1 + e2) / 2.0)
res2 = _jsdiv(P_, Q_)
if not np.allclose(res, res2, atol=10e-5, rtol=0):
warnings.warn('Numerical values of two JSD methods don\'t agree.')
return res
def _jsdiv(P, Q):
'''another way of computing JSD'''
def _kldiv(A, B):
a = A.copy()
b = B.copy()
idx = np.logical_and(a > 0, b > 0)
a = a[idx]
b = b[idx]
return np.sum([v for v in a * np.log2(a / b)])
P_ = P / np.sum(P)
Q_ = Q / np.sum(Q)
M = 0.5 * (P_ + Q_)
return 0.5 * (_kldiv(P_, M) + _kldiv(Q_, M))
def downsample_pc(points, n):
sample_idx = random.sample(list(range(points.shape[0])), n)
return points[sample_idx]
def normalize_pc(points):
# normalize
mean = np.mean(points, axis=0)
points = (points - mean)
# fit to unit cube
scale = np.max(np.abs(points))
points = points / scale
return points
def collect_pc(cad_folder):
pc_path = find_files(os.path.join(cad_folder, 'pcd'), 'final_pcd.ply')
if len(pc_path) == 0:
return []
pc_path = pc_path[-1] # final pcd
pc = read_ply(pc_path)
if pc.shape[0] > N_POINTS:
pc = downsample_pc(pc, N_POINTS)
pc = normalize_pc(pc)
return pc
def collect_pc2(cad_folder):
pc = read_ply(cad_folder)
if pc.shape[0] > N_POINTS:
pc = downsample_pc(pc, N_POINTS)
pc = normalize_pc(pc)
return pc
theta_x = np.radians(90) # Rotation angle around X-axis
theta_y = np.radians(90) # Rotation angle around Y-axis
theta_z = np.radians(180) # Rotation angle around Z-axis
# Create individual rotation matrices
Rx = np.array([[1, 0, 0],
[0, np.cos(theta_x), -np.sin(theta_x)],
[0, np.sin(theta_x), np.cos(theta_x)]])
Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)],
[0, 1, 0],
[-np.sin(theta_y), 0, np.cos(theta_y)]])
Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0],
[np.sin(theta_z), np.cos(theta_z), 0],
[0, 0, 1]])
rotation_matrix = np.dot(np.dot(Rz, Ry), Rx)
def collect_pc3(cad_folder):
pc = read_ply(cad_folder)
if pc.shape[0] > N_POINTS:
pc = downsample_pc(pc, N_POINTS)
pc = normalize_pc(pc)
rotated_point_cloud = np.dot(pc, rotation_matrix.T).astype(np.float32) # Transpose the rotation matrix to apply it correctly
return rotated_point_cloud
def load_data_with_prefix(root_folder, prefix):
data_files = []
# Walk through the directory tree starting from the root folder
for root, dirs, files in os.walk(root_folder):
for filename in files:
# Check if the file ends with the specified prefix
if filename.endswith(prefix):
file_path = os.path.join(root, filename)
data_files.append(file_path)
return data_files
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--fake", type=str)
parser.add_argument("--real", type=str)
parser.add_argument("--n_test", type=int, default=1000)
parser.add_argument("--multi", type=int, default=3)
parser.add_argument("--times", type=int, default=10)
parser.add_argument("--batch_size", type=int, default=64)
args = parser.parse_args()
print("n_test: {}, multiplier: {}, repeat times: {}".format(args.n_test, args.multi, args.times))
args.output = args.fake + '_results.txt'
# Load reference pcd
num_cpus = multiprocessing.cpu_count()
ref_pcs = []
shape_paths = load_data_with_prefix(args.real, '.ply')
load_iter = multiprocessing.Pool(num_cpus).imap(collect_pc2, shape_paths)
for pc in tqdm(load_iter, total=len(shape_paths)):
if len(pc) > 0:
ref_pcs.append(pc)
ref_pcs = np.stack(ref_pcs, axis=0)
print("real point clouds: {}".format(ref_pcs.shape))
# Load fake pcd
sample_pcs = []
shape_paths = load_data_with_prefix(args.fake, '.ply')
load_iter = multiprocessing.Pool(num_cpus).imap(collect_pc2, shape_paths)
for pc in tqdm(load_iter, total=len(shape_paths)):
if len(pc) > 0:
sample_pcs.append(pc)
sample_pcs = np.stack(sample_pcs, axis=0)
print("fake point clouds: {}".format(sample_pcs.shape))
# Testing
fp = open(args.output, "w")
result_list = []
for i in range(args.times):
print("iteration {}...".format(i))
select_idx = random.sample(list(range(len(sample_pcs))), int(args.multi * args.n_test))
rand_sample_pcs = sample_pcs[select_idx]
select_idx = random.sample(list(range(len(ref_pcs))), args.n_test)
rand_ref_pcs = ref_pcs[select_idx]
jsd = jsd_between_point_cloud_sets(rand_sample_pcs, rand_ref_pcs, in_unit_sphere=False)
with torch.no_grad():
rand_sample_pcs = torch.tensor(rand_sample_pcs).cuda()
rand_ref_pcs = torch.tensor(rand_ref_pcs).cuda()
result = compute_cov_mmd(rand_sample_pcs, rand_ref_pcs, batch_size=args.batch_size)
result.update({"JSD": jsd})
print(result)
print(result, file=fp)
result_list.append(result)
avg_result = {}
for k in result_list[0].keys():
avg_result.update({"avg-" + k: np.mean([x[k] for x in result_list])})
print("average result:")
print(avg_result)
print(avg_result, file=fp)
fp.close()
if __name__ == '__main__':
main()