-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
37 lines (31 loc) · 1.21 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy
import pandas
from keras.layers import Dense
from keras.models import Sequential
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
# define base model
def baseline_model():
# create model
model = Sequential()
model.add(Dense(13, input_dim=13, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# Compile model
model.compile(loss='mean_squared_error', optimizer='adam')
return model
if __name__ == '__main__':
# load dataset
dataframe = pandas.read_csv("housing.csv", delim_whitespace=True, header=None)
dataset = dataframe.values
# split into input (X) and output (Y) variables
X = dataset[:, 0:13]
Y = dataset[:, 13]
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# evaluate model with standardized dataset
estimator = KerasRegressor(build_fn=baseline_model, epochs=100, batch_size=5, verbose=0)
kfold = KFold(n_splits=10, random_state=seed)
results = cross_val_score(estimator, X, Y, cv=kfold)
print("Results: %.2f (%.2f) MSE" % (results.mean(), results.std()))