-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathicl_sailor_evaluator.py
169 lines (130 loc) · 5.41 KB
/
icl_sailor_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import langid
import random
import evaluate
import numpy as np
from typing import List
from collections import Counter
from pythainlp.tokenize import word_tokenize
from .icl_base_evaluator import BaseEvaluator
from .icl_hf_evaluator import HuggingfaceEvaluator
from opencompass.registry import ICL_EVALUATORS
from opencompass.utils import general_ans_postprocess, general_pred_postprocess
@ICL_EVALUATORS.register_module()
class AnsEvaluator(BaseEvaluator):
"""Exact match evaluator."""
def __init__(self) -> None:
super().__init__()
def score(self, predictions, references):
if len(predictions) != len(references):
return {
'error': 'predictions and references have different '
'length'
}
em_cnt = 0
f1_cnt = 0
details = []
for pred, ans in zip(predictions, references):
if not isinstance(pred, str):
pred = str(pred)
if not isinstance(ans, str):
ans = str(ans)
processed_pred = general_pred_postprocess(pred.lower())
processed_ans = general_ans_postprocess(ans.lower())
pred_set = set([
pred.lower(),
processed_pred
]) # noqa
ans_set = set([
ans.lower(),
processed_ans
]) # noqa
detail = {'pred': pred, 'answer': ans}
if len(pred_set & ans_set) > 0:
em_cnt += 1
detail['correct'] = True
else:
detail['correct'] = False
details.append(detail)
lang, _ = langid.classify(pred)
if lang == 'th':
pred_words = word_tokenize(processed_pred, join_broken_num=True, keep_whitespace=False)
ans_words = word_tokenize(processed_ans, join_broken_num=True, keep_whitespace=False)
else:
pred_words = processed_pred.split()
ans_words = processed_ans.split()
common_words = Counter(pred_words) & Counter(ans_words)
common_num = sum(common_words.values())
if len(common_words) == 0:
f1 = 0
else:
prec = 1.0 * common_num / len(pred_words) if len(pred_words) != 0 else 0
rec = 1.0 * common_num / len(ans_words) if len(ans_words) != 0 else 0
f1 = 2 * (prec * rec) / (prec + rec) if prec + rec != 0 else 0
f1_cnt += f1
em_score = em_cnt / len(predictions) * 100
f1_score = f1_cnt / len(predictions) * 100
return {'EM': em_score, 'F1': f1_score, 'details': details}
class TextGenEvaluator(BaseEvaluator):
def __init__(self, seed: int = 0) -> None:
self.seed = seed
super().__init__()
def _preprocess(self, predictions: List, references: List) -> dict:
"""Preprocess the final predictions and references to needed format.
Args:
predictions (List): List of predictions of each sample.
references (List): List of targets for each sample.
Returns:
dict: preprocessed results.
"""
return {
'predictions': [general_pred_postprocess(pred.lower()) for pred in predictions],
'references': [ref.lower() for ref in references],
}
def _postprocess(self, bleu_results: dict, chrfpp_results: dict) -> dict:
"""Postprocess for final scores.
Args:
scores (dict): Dict of calculated scores of metrics.
Returns:
dict: postprocessed scores.
"""
return {'BLEU': bleu_results['score'], 'Chrf++': chrfpp_results['score']}
def score(self, predictions: List, references: List) -> dict:
"""Calculate scores.
Args:
predictions (List): List of predictions of each sample.
references (List): List of targets for each sample.
Returns:
dict: calculated scores.
"""
random_state = random.getstate()
np_random_state = np.random.get_state()
random.seed(self.seed)
np.random.seed(self.seed)
if len(predictions) != len(references):
return {
'error':
'predictions and references have different '
f'length. len(predictions): {len(predictions)}, '
f'len(references): {len(references)}'
}
self.metric = 'sacrebleu'
local_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'hf_metrics', self.metric + '.py')
if os.path.exists(local_path):
metric = evaluate.load(local_path)
else:
metric = evaluate.load(self.metric)
bleu_results = metric.compute(**self._preprocess(predictions, references))
self.metric = 'chrf'
local_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'hf_metrics', self.metric + '.py')
if os.path.exists(local_path):
metric = evaluate.load(local_path)
else:
metric = evaluate.load(self.metric)
chrfpp_results = metric.compute(**self._preprocess(predictions, references), word_order=2)
result = self._postprocess(bleu_results, chrfpp_results)
random.setstate(random_state)
np.random.set_state(np_random_state)
return result